
Package ‘cvam’
October 18, 2021

Type Package

Title Coarsened Variable Modeling

Version 0.9.2

Date 2021-10-05

Author Joseph L. Schafer <Joseph.L.Schafer@census.gov>

Maintainer Joseph L. Schafer <Joseph.L.Schafer@census.gov>

Description Extends R's implementation of categorical variables (factors)
to handle coarsened observations; implements log-linear models for
coarsened categorical data, including latent-class models. Detailed
information and examples are provided in the package vignettes.

Depends R (>= 3.5.0)

Imports stats, Formula, coda

Suggests nnet, lme4, MASS, xtable

License GPL-3 | file LICENSE

LazyData yes

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-10-18 16:30:08 UTC

R topics documented:
cvam-package . 2
abortion2000 . 3
anova.cvam . 5
baseLevels . 7
cig2019 . 8
coarsened . 10
crime . 12
cvam . 13
cvamControl . 17
cvamEstimate . 19

1

2 cvam-package

cvamImpute . 21
cvamLik . 23
cvamPredict . 24
cvamPrior . 25
dropCoarseLevels . 27
get.coef . 28
hivtest . 32
is.naCoarsened . 33
latentFactor . 34
microUCBAdmissions . 35
miInference . 35
seatbelt . 37
summary.cvam . 38

Index 40

cvam-package Coarsened Variable Modeling

Description

Extends R’s implementation of categorical variables (factors) to handle coarsened observations; im-
plements log-linear models for coarsened categorical data, including latent-class models. Detailed
information and examples are provided in the package vignettes.

Details

Log-linear models, when applied to frequencies in a multiway table, describe associations among
the factors that define the dimensions of the table. Standard functions for fitting log-linear models
in R, including glm and loglin, cannot accept observations with incomplete information on any of
the factors in the model, because those observations cannot be assigned with certainty to a single
cell of the complete-data table. The functions in the cvam package facilitate log-linear modeling of
factors with missing and coarsened values. The two major functions are:

coarsened Create a coarsened factor
cvam Log-linear models for coarsened factors

A coarsened factor is an extended version of a factor whose elements may be fully observed, par-
tially observed or missing. The partially-observed and missing states are represented by extra levels
which are interpreted as groupings of the fully observed states. The cvam function fits log-linear
models to coarsened factors. It also accepts ordinary factors with or without missing values, and
factors that contain only missing values, which are useful for latent-class analysis. The modeling
routines implemented in cvam include EM algorithms for mode finding and Markov chain Monte
Carlo procedures for Bayesian simulation and multiple imputation. Supporting funtions are used to
extract information from a fitted model, including:

abortion2000 3

anova Compare the fit of cvam models
cvamEstimate Estimated marginal and conditional probabilities
cvamPredict Predict missing or coarsened values
cvamLik Likelihood of observed data patterns
cvamImpute Impute missing or coarsened values

Five datasets are also provided:

abortion2000 Abortion attitudes from the General Social Survey
crime Crime victimization data
hivtest HIV test dataset
microUCBAdmissions U.C. Berkeley graduate admissions microdata
seatbelt Seatbelt data

Author(s)

Joseph L. Schafer <Joseph.L.Schafer@census.gov>

Maintainer: Joseph L. Schafer <Joseph.L.Schafer@census.gov>

References

Extended descriptions and examples for all major functions are provided in two vignettes, Under-
standing Coarsened Factors in cvam and Log-Linear Modeling with Missing and Coarsened Values
Using the cvam Package.

abortion2000 Abortion Attitudes from the 2000 General Social Survey

Description

This dataset, which was extracted from the 2000 General Social Survey (GSS) (Smith et al., 2019),
reports the responses of adults in the United States to seven questions about legalized abortion. The
questions began, “Please tell me whether or not you think it should be possible for a pregnant woman
to obtain a legal abortion if...” The abortion items were given to a random two-thirds subsample of
GSS participants, so about 33% of the values are NA by design. Refusal to answer the question (a
rare occurrence) was also coded here as NA.

The data frame also includes variables on age, sex, race, Hispanic origin, education, religious and
political affiliation. A second race item, which was modeled after the race question on the U.S.
Census questionnaire, was given to a random half-sample.

In general, analyses of GSS data should account for the complex sample design. Sample weights,
stratum and cluster indicators are included for this purpose.

Usage

abortion2000

4 abortion2000

Format

a data frame with 2,817 rows and 19 variables:

Age respondent’s age, a factor with levels "18-29", "30-49", "50-64", and "65+"

Sex respondent’s sex, a factor with levels "Female" and "Male"

Race respondent’s race, a factor with levels "White", "Black", and "Other"; see NOTE below

CenRace respondent’s race, a factor with levels "White", "Black", "Hisp" and "Other"; see
NOTE below

Hisp respondent’s Hispanic classification, a factor with levels "nonHisp" and "Hisp"

Degree respondent’s education, a factor with levels "<HS" (did not finish high school), "HS" (high
school diploma), "JunCol" (junior college), "Bach" (Bacheor’s degree), and "Grad" (gradu-
ate degree)

Relig respondent’s religious preference, a factor with levels "Prot" (Protestant), "Cath" (Roman
Catholic), "Jewish", "None", and "Other"

Party respondent’s political party identification, a factor with levels "Dem" (Democrat), "Rep"
(Republican), and "Ind/Oth" (Independent or Other); see NOTE below

PolViews respondent’s political views, a factor with levels "Con" (Conservative), "Mod" (Moder-
ate), and "Lib" (Liberal)

Each of the next seven variables below is a factor with levels "Yes", "No", and "DK" (don’t know).
The items were prefixed by, “Please tell me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion if...”

AbDefect “...If there is a strong chance of serious defect in the baby?”

AbNoMore “...If she is married and does not want any more children?”

AbHealth “...If the woman’s own health is seriously endangered by the pregnancy?”

AbPoor “...If the family has a very low income and cannot afford any more children?”

AbRape “...If she became pregnant as a result of rape?”

AbSingle “...If she is not married and does not want to marry the man”

AbAny “...The woman wants it for any reason?”

The three variables below may be used to compute estimates and standard errors that account for
the survey’s complex sample design:

WTSSALL numeric sampling weight, inversely proportional to the individual’s probability of being
selected into the sample

VSTRAT integer code identifying the stratum for variance estimation

VPSU integer code identifying the primary sampling unit (PSU) (i.e., the primary cluster) within
stratum for variance estimation; see NOTE below

anova.cvam 5

Note

Race, which corresponds to the GSS variable race, is based on the interviewer’s assessment of the
respondent’s race. When interviewers were not sure, they could ask the respondent, “What race do
you consider yourself?”
CenRace is a collapsed version of the GSS variable racecen1. That variable, which was modeled
on the race question in the U.S. Census, was given to half of the GSS sample in 2000 and to the
full sample in subsequent years. Participants could choose from over a dozen race categories, or
they could select “Some other race” and provide their own. The "Hisp" values represent those
who chose “Some other race” and described themselves as Hispanic, Latino, Latina, or something
similar.
Party is based on the GSS variable partyid. Level "Dem" includes Democrat-leaning Indepen-
dents, and "Rep" includes Republican-leaning Independents.
The cluster identifier VPSU is nested within the stratum identifier VSTRAT; for example, VPSU == 1 in
VSTRAT == 1644 and VPSU == 1 in VSTRAT == 1645 represent different clusters.

Source

Smith, T.W., Davern, M., Freese, J., and Morgan, S.L. (2019) General Social Surveys, 1972–2018.
National Data Program for the Social Sciences, No. 25., 1 data file (64,814 logical records) + 1
codebook (3,758 pp.). Chicago: NORC.

anova.cvam Comparing the Fit of Two or More Models

Description

Compares the fit of two or more cvam objects

Usage

S3 method for class 'cvam'
anova(object, ..., method = c("lrt", "logP", "AIC", "BIC"),

pval = FALSE, pvalDigits = 4L, showRank=NULL)

Arguments

object an object produced by cvam

... additional cvam objects
method criterion for model comparison: "lrt" uses -2 times the loglikelihood function

for a standard likelihood-ratio test; "logP" uses -2 times the penalized loglike-
lihood or log-posterior density; "AIC" uses Akaike information criterion; and
"BIC" uses Bayesian information criterion.

pval if TRUE then p-values will be computed if method is "lrt" or "logP".
pvalDigits digits for rounding of p-values
showRank if TRUE, models will be ranked from best to worst (with rank 1 being the best)

according to the fit measure specified by method. Defaults to TRUE if method is
"AIC" or "BIC"

6 anova.cvam

Details

The p-values reported for the "lrt" and "logP" methods use a standard chi-squared approximation,
with degrees of freedom equal to the difference in the number of parameters for the models being
compared. This approximation is valid only if the models being compared are properly nested and
ordered, with the simplest model appearing first in the argument list. The chi-squared approximation
can be poor if the degrees of freedom for the comparison is large, and if the model corresponding to
the null hypothesis (i.e., the smaller one) has fitted cell means that are too small. The chi-squared
approximation is not appropriate for comparing latent-class models with a different number of latent
classes.

The likelihood function used in "lrt" and "logP" is based on a Poisson model for the cell means
in the complete-data table. The Poisson model is an appropriate surrogate for a multinomial model.
It is also an appropriate surrogate for a product multinomial if the model includes all possible
associations among variables regarded as fixed.

The residual degrees of freedom are the difference between the number of free parameters in a
saturated Poisson model minus the number of free parameters in the current Poisson model. The
saturated model estimates one parameter for every cell in the complete-data table, excluding dimen-
sions for latent factors, and excluding structural-zero cells. No adjustments are made for estimates
on a boundary of the parameter space.

For "BIC", the sample size is taken to be the total number of observations or total frequency in
the data supplied by the user to fit the model, which does not include a flattening constant or any
nuggets from a prior distribution created by cvamPrior. No adjustments are made for missing or
coarsened values.

Value

an object of class c("anova","data.frame")

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam

Examples

M0 <- cvam(~ V1 + V2, data=crime, freq=n)
M1 <- cvam(~ V1 * V2, data=crime, freq=n)
anova(M0, M1, pval=TRUE)

baseLevels 7

baseLevels Get Coarsened Factor Attributes

Description

Retrieve specific attributes of a coarsened factor.

Usage

baseLevels(x)
nBaseLevels(x)
coarseLevels(x)
nCoarseLevels(x)
mapping(x)

Arguments

x a coarsened factor

Details

A coarsened factor, produced by the function coarsened, is an extended type of factor whose
elements may be fully observed, partially observed, or missing. The full set of attributes of a
coarsened factor may be obtained by attributes, and individual attributes are available with attr.
The functions documented on this page are convenient alternatives to attr.

The elements of baseLevels, a character vector of length nBaseLevels, represent states of com-
plete knowledge. The elements of coarseLevels, a character vector of length nCoarseLevels, rep-
resent states of incomplete or missing information. Each element of coarseLevels maps onto two
or more elements of baseLevels. The attribute mapping is an integer matrix with nCoarseLevels
rows and nBaseLevels columns, with 1 in position [i,j] if coarse level i contains base level j.
The last coarse level is always NA, and it contains every base level.

Value

The requested attribute of x.

Note

A coarsened factor has the usual attributes of a factor, but they should not be altered directly. For
example, the function levels<-, the replacement version of levels, should not be used with a
coarsened factor.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

8 cig2019

References

For more information, refer to the package vignette Understanding Coarsened Factors in cvam.

See Also

cvam, coarsened, is.naCoarsened, dropCoarseLevels

Examples

fac <- factor(c("red", "green", NA, "yellow", "notRed", "green"))
cFac <- coarsened(fac,

levelsList = list("notRed" = c("green", "yellow")))
baseLevels(cFac)
mapping(cFac)

cig2019 Cigarette Use from the 2019 National Health Interview Survey

Description

The National Health Interview Survey (NHIS), conducted by the National Center for Health Statis-
tics and the U.S. Census Bureau, is a large, annual, cross-sectional survey designed to measure
health status and behaviors in the non-institutionalized U.S. population. This dataset, which was
extracted from the 2019 NHIS, includes responses to several questions pertaining to cigarettes.
Adult participants (age 18+) were asked, “Have you smoked at least 100 cigarettes in your entire
life?” Those who answered “Yes” were asked additional questions about current use; for those who
did not, the interviewers skipped to the next section.

Analyses of NHIS data should account for the stratified multistage cluster sample design. Sample
weights, stratum and cluster indicators are included for this purpose.

Usage

cig2019

Format

a data frame with 31,997 rows and 14 variables:

wtia_a interim annual weight for analysis of adult questionnaire items; see NOTE below

wtfa_a final annual weight for analysis of adult questionnaire items; see NOTE below

urbrrl urban/rural classification scheme for counties, a factor with levels "Large central metro",
"Large fringe metro", "Med/small metro". and "Nonmetropolitan"

region region within the United States, a factor with levels "Northeast", "Midwest", "South",
and "West"

pstrat pseudo-stratum for variance estimation

ppsu pseudo-primary sampling unit for variance estimation; see NOTE below

cig2019 9

agep_a age in years; see NOTE below

sex_a sex, a factor with levels "Male" and "Female"

hispall_p single and multiple race groups with Hispanic origin, a factor with levels "Hispanic",
"NH White only", "NH Black/AfrAmer only", "NH Asian only", "NH AIAN only", "NH AIAN
and other group", and "Other single and multiple races"

smkev_a “Have you smoked at least 100 cigarettes in your ENTIRE LIFE?”, a factor with levels
"Yes" and "No"

smknow_a “Do you NOW smoke cigarettes every day, some days or not at all?”, a factor with levels
"Every day", "Some days", and "Not at all"; see NOTE below

cignow_a “On average, about how many cigarettes do you NOW smoke a day?”; see NOTE below

smk30d_a “On how many of the PAST 30 DAYS did you smoke a cigarette?”; see NOTE below

cig30d_a “On average, when you smoked during the PAST 30 DAYS, about how many cigarettes
did you smoke a day?”; see NOTE below

Note

The weight variables wtia_a and wtfa_a both reflect the probability that the person was selected
into the sample. The interim annual adult weight wtia includes adjustments for nonresponse due
to non-participation in the interview. The final annual adult weight wtia includes adjustments
for nonresponse and additional factors to calibrate the sample to population totals for important
geographic and demographic variables.

The cluster identifier ppsu is nested within the stratum identifier pstrat; for example, ppsu == 1 in
pstrat == 100 and ppsu == 1 in pstrat == 101 represent different clusters.

The age variable agep_a is top-coded at 85; the value agep_a == 85 indicates 85 or older.

Question smknow_a, “Do you NOW smoke cigarettes every day, some days, or not at all?”, was
asked only if smkev_a =="Yes"; otherwise it is missing.

Question cignow_a, “On average, about how many cigarettes do you NOW smoke a day?”, was
asked only if smknow_a == "Every day"; otherwise it is missing. This variable is top-coded at 95.

Question smk30d_a, “On how many of the PAST 30 DAYS did you smoke a cigarette?”, was asked
only if smknow_a == "Some days"; otherwise it is missing.

Question cig30d_a, “On average, when you smoked during the PAST 30 DAYS, about how many
cigarettes did you smoke a day?”, was asked only if smknow_a == "Some days" and if (smk30d_a >
0) | is.na(smk30d_a). This variable is top-coded at 95.

Source

National Center for Health Statistics. National Health Interview Survey, 2019. Public-use data file
and documentation. https://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm. 2020.

https://www.cdc.gov/nchs/nhis/data-questionnaires-documentation.htm

10 coarsened

coarsened Coarsened Factors

Description

A coarsened factor is an extended version of a factor or ordered factor whose elements may be fully
observed, partially observed or missing. The partially-observed and missing states are represented
by extra levels which are interpreted as groupings of the fully observed states. Coarsened factors
are specifically designed for modeling with the cvam package.

Usage

coarsened(obj, levelsList = list(), warnIfCoarsened = TRUE)

is.coarsened(x)

S3 method for class 'coarsened'
print(x, quote = FALSE, max.levels = NULL,

width = getOption("width"), ...)

S3 method for class 'coarsened'
droplevels(x, ...)

S3 method for class 'coarsened'
relevel(x, ...)

S3 method for class 'coarsened'
reorder(x, ...)

S3 method for class 'coarsened'
rep(x, ...)

S3 method for class 'coarsened'
x[...]

S3 method for class 'coarsened'
x[[...]]

S3 replacement method for class 'coarsened'
x[...] <- value

S3 replacement method for class 'coarsened'
x[[...]] <- value

Arguments

obj a factor or ordered factor to be converted to a coarsened factor

coarsened 11

levelsList a named list that defines the groupings of levels(obj) to indicate states of
partial knowledge

warnIfCoarsened

if TRUE, a warning is issued if obj is already a coarsened factor

x a coarsened factor or other object

quote logical, indicating whether or not strings should be printed with surrounding
quotes

max.levels integer, indicating how many base levels and coarse levels should be printed for a
coarsened factor; if 0, no extra base levels or coarse levels lines will be printed.
The default, NULL, entails choosing max.levels such that the base levels and
coarse levels each print on one line of width width

width only used when max.levels is NULL; see above

... additional arguments passed to or from other methods

value character: a set of levels for replacement

Details

A coarsened factor, which inherits from class "factor" or c("ordered","factor"), has two types
of levels: base levels, which represent states of complete knowledge, and coarse levels, which
represent states of incomplete knowledge. Each coarse level maps to two or more base levels. The
mapping is defined by the argument levelsList.

For example, consider a factor whose levels are c("red","notRed","green","yellow"), where
"notRed" denotes an observation that is either "green" or "yellow". When the factor is converted
to a coarsened factor, c("red","green","yellow") becomes the baseLevels, and "notRed" be-
comes an element of coarseLevels. To produce this result, the argument levelsList should have
a component named "notRed", whose value is c("green","yellow").

The last coarse level is NA, denoting an observation that could belong to any of the base levels.
The NA coarse level is created automatically. Calling coarsened with an empty levelsList (the
default) produces a coarsened factor with NA as its only coarse level.

If the main argument to coarsened is already a coarsened factor, then a warning is issued (if
warnIfCoarsened is TRUE) and the coarsened factor is returned unchanged.

The generic functions droplevels, relevel, and reorder should not be applied to coarsened
factors; the S3 methods droplevels.coarsened, relevel.coarsened, and reorder.coarsened
will prevent this from happening.

rep.coarsened is a method for the generic function rep that ensures the special attributes of a
coarsened factor are preserved.

Extraction and replacement methods `[` and `[[` are also provided to preserve the special at-
tributes of coarsened factors.

Value

coarsened returns a coarsened factor.

is.coarsened returns TRUE if x is a coarsened factor and FALSE otherwise.

12 crime

Note

Coarsened factors were designed for use by the modeling function cvam, which treats base levels
and coarse levels differently. Other statistical modeling routines, such as lm, may not handle them
appropriately. Functions outside of the cvam package will treat coarse levels (including NA) the
same as base levels, producing results that are difficult to interpret or nonsensical, especially if the
base levels are ordered.

The behavior of coarsened with levelsList = list() is similar to that of addNA, which converts
the missing values in a factor to non-missing observations with value NA and adds NA to the levels.
The result of addNA, however, is an ordinary factor or ordered factor which has no mechanism to
inform other functions that NA has special meaning.

The function is.na should not be applied to a coarsened factor; use is.naCoarsened instead.

Because base levels and coarse levels should be handled differently, functions from base R that
manipulate the levels of a factor, including relevel, reorder, droplevels, and the replacement
version of levels should not be used with coarsened factors. Supplying a coarsened factor to any
of these functions will produce an error.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Understanding Coarsened Factors in cvam.

See Also

cvam, is.naCoarsened, baseLevels, dropCoarseLevels

Examples

fac <- factor(c("red", "green", NA, "yellow", "notRed", "green"))
cFac <- coarsened(fac,

levelsList = list("notRed" = c("green", "yellow")))
print(cFac)
extraction and replacement
print(cFac[2:3])
cFac[2:3] <- c("NA", "green")

crime Crime Victimization Data

Description

This dataset, reported and analyzed by Kadane (1985), comes from the National Crime Survey con-
ducted by the U.S. Bureau of the Census. Occupants of housing units were interviewed to determine
whether they had been victimized by crime in the preceding six-month period. Six months later,
the units were visited again to determine whether the occupants had been victimized during the
intervening months. Missing values for various reasons occurred at both occasions.

cvam 13

Usage

crime

Format

a data frame with 9 rows and 3 variables:

V1 victimization status from the first visit

V2 victimization status from the second visit

n frequency in sample

Source

Kadane, J.B. (1985) Is victimization chronic? a Bayesian analysis of multinomial missing data.
Journal of Econometrics, 29, 47-67.

Schafer, J.L. (1997) Analysis of Incomplete Multivariate Data. London: Chapman & Hall/CRC
Press.

cvam Log-Linear Models for Incomplete Categorical Variables

Description

Fits log-linear models to categorical variables by three methods: maximizing the loglikelihood
or log-posterior density by Expectation-Maximization (EM) algorithms, simulating the posterior
distribution by a Markov chain Monte Carlo (MCMC) algorithms, and creating random draws of
parameters from an approximate Bayesian posterior distribution. The factors in the model may have
missing or coarsened values.

Usage

cvam(obj, ...)

S3 method for class 'formula'
cvam(obj, data, freq, weight, subPop,

stratum, cluster, nest = FALSE, prior = cvamPrior(),
method = c("EM", "MCMC", "approxBayes", "mfSeen", "mfTrue",

"mfPrior", "modelMatrix"), control = list(), omitData = FALSE,
saturated = FALSE, modelMatrix = NULL, offset = NULL,
strZero = NULL, startVal = NULL, estimate = NULL, ...)

S3 method for class 'cvam'
cvam(obj, method = obj$method, control = NULL, startVal = NULL,

estimate = NULL, ...)

14 cvam

Arguments

obj an object used to select a method: either a model formula or the result from a
previous call to cvam.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(obj), typically the environment from
which cvam is called.

freq an optional variable for holding integer frequencies when the observations are
grouped. If freq is not given, then the observations are assumed to represent
microdata, and all frequencies are set to one.

weight an optional numeric variable containing survey weights, which are used when
computing pseudo-maximum likelihood (PML) estimates from survey data. If
weight is given, then the data supplied are interpreted as microdata, with each
row having a frequency of one.

subPop an optional logical variable indicating membership in a subpopulation for com-
puting PML estimates from survey data.

stratum an optional variable indicating the sampling stratum to which a unit belongs,
used when computing linearized variance estimates for parameter estimates un-
der a with-replacement (WR) survey design; see DETAILS.

cluster an optional factor variable indicating the primary (first-stage) sampling cluster
to which a unit belongs, used when computing linearized variance estimates for
parameters under a with-replacement (WR) survey design; see DETAILS.

nest if TRUE, duplicate values of the cluster variable appearing in different strata are
assumed to refer to different clusters.

prior an object produced by cvamPrior to represent prior information incorporated
into the model fit.

method a procedure for fitting the model: "EM" computes a maximum-likelihood (ML)
estimate, penalized ML estimate, posterior mode, or (if survey weights are pro-
vided) a pseudo-maximum likelihood (PML) estimate; "MCMC" runs a Markov
chain Monte Carlo algorithm to simulate a sequence of correlated random draws
from the posterior distribution of the unknown parameters; "approxBayes" cre-
ates independent draws from an approximate posterior distribution. The other
alternatives return various objects without fitting the model.

control a named list containing control parameters which are passed to cvamControl.
Control parameters determine the maximum number of iterations, criteria for
judging convergence, proposal distributions for MCMC, and so on. Control
parameters that are not found in this list are set to default values.

omitData if TRUE, then the observations supplied through data and freq are ignored, and
the fitted model is based only the prior information supplied through prior.
Combining omitData=TRUE with method="MCMC" will simulate random draws
from the prior distribution.

saturated if TRUE, then a saturated model is fit to the cell means without defining a model
matrix or log-linear coefficients.

cvam 15

modelMatrix an optional model matrix that defines the log-linear model. In ordinary circum-
stances, cvam creates the model matrix automatically by interpreting terms in
the model formula and referring to the contrast attributes of the model fac-
tors. In rare circumstances, a user may want to supply a different model matrix.
The model matrix should have one row for every cell in the complete-data ta-
ble. If a model matrix is supplied, the model formula is used only to identify
the variables that are included the model, not to define the associations among
them.

offset an optional numeric vector of length NROW(modelMatrix) containing an offset
for the log-linear model. If omitted, the offset is assumed to be zero for every
cell.

strZero an optional logical vector of length NROW(modelMatrix) containing TRUE for
every cell to be considered a structural zero and FALSE elsewhere. Structural ze-
ros are assumed to have zero probability and are omitted from the model fitting.
If strZero is omitted, all elements are assumed to be FALSE.

startVal an optional vector of starting values for the model parameters. If saturated=FALSE,
this should be a vector of length NCOL(modelMatrix) containing log-linear co-
efficients; if saturate=FALSE, it should be a vector of length NROW(modelMatrix)
containing cell probabilities or cell means, which are automatically rescaled to
become probabilities.

estimate an optional formula or list of formulas of the kind expected by cvamEstimate
specifying marginal or conditional probabilities to be estimated, bypassing the
need for a subsequent call to that function.

... values to be passed to the methods.

Details

A log-linear model is specified by a one-sided formula that determines which associations among
the variables are allowed. For example, ~ A + B + C implies that A, B and C are mutually independent;
~ A*B + A*C implies that B and C are conditionally independent given A; and so on. Variables in a
model may be factors or coarsened factors, and missing values are permitted. All models are fit
using a surrogate Poisson formulation which is appropriate for Poisson, multinomial or product-
multinomial sampling. A formula may contain a vertical bar to specify variables to be regarded as
fixed; for example, ~ A*B + A*C | A fixes the variable A. Fixing variables does not change the model
fitting procedure; the only difference is that, after the model has been fit, the cell probabilities are
scaled to sum to one within every combination of levels of the fixed variables.

If cvam is called with a cvam object as its first argument, then the data, model and prior distribution
will be taken from the previous run, and (unless startVal is supplied), starting values will be set
to the final parameter values from the previous run.

If method is "EM" and survey weights are supplied through weight, then cvam performs pseudo-
maximum likelihood (PML) estimation. The target of PML is the set of parameters that would be
obtained if the given model were fit to all units in the finite population (or, if subPop is given, the
subpopulation). If saturated=FALSE, then standard errors for log-linear coefficients are computed
using a linearization method that assumes the first stage of sampling within strata was carried out
with replacement (WR). Although WR sampling is rarely done in actual surveys, it is often assumed
for variance estimation, and if the first-stage sampling was actually done without replacement the
resulting standard errors tend to be conservative. The WR survey design information is provided

16 cvam

through weight, stratum and cluster. The stratum and cluster variables are coerced to factors.
If stratum is omitted, then the population is regarded as a single stratum. If cluster is omitted,
then each sample unit is treated as a cluster.

Value

if method is "EM", "MCMC" or "approxBayes", an object of class c("cvam","list") containing the
results of a model fit. For other values of method, the requested object is returned without fitting a
model.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

Extended descriptions and examples for all major functions are provided in two vignettes, Under-
standing Coarsened Factors in cvam and Log-Linear Modeling with Missing and Coarsened Values
Using the cvam Package.

See Also

coarsened, cvamPrior, cvamControl, cvamEstimate, get.coef, summary.cvam

Examples

convert U.C. Berkeley admissions three-way table to data frame,
fit model of conditional independence, display summary
compare the fit to the saturated model
dF <- as.data.frame(UCBAdmissions)
fit <- cvam(~ Dept*Gender + Dept*Admit, data=dF, freq=Freq)
summary(fit)
fitSat <- cvam(~ Dept*Gender*Admit, data=dF, freq=Freq)
anova(fit, fitSat, pval=TRUE)

fit non-independence model to crime data; then run MCMC for
5000 iterations, creating 10 multiple imputations of the frequencies
for the 2x2 complete-data table
fit <- cvam(~ V1 * V2, data=crime, freq=n)
set.seed(56182)
fitMCMC <- cvam(fit, method="MCMC",

control=list(iterMCMC=5000, imputeEvery=500))
get.imputedFreq(fitMCMC)

cvamControl 17

cvamControl Control Parameters for cvam

Description

The cvam function fits log-linear models to coarsened categorical variables. Its model-fitting pro-
cedures are governed by parameters in a cvamControl object created by the auxiliary function
documented here. This function is intended for internal use; the only reason to invoke this function
directly is to display the control parameters and their default values.

Usage

cvamControl(iterMaxEM = 500L, iterMaxNR = 50L,
iterApproxBayes = 1L, imputeApproxBayes = FALSE,
iterMCMC = 5000L, burnMCMC = 0L, thinMCMC = 1L, imputeEvery = 0L,
saveProbSeries = FALSE,
typeMCMC = c("DA","RWM"), tuneDA = c(10,.8,.8), tuneRWM = c(1000,.1),
stuckLimit = 25L,
startValDefault = c("center", "uniform"), startValJitter = 0,
critEM = 1e-06, critNR = 1e-06, critBoundary = 1e-08, ncolMaxMM = 1000L,
excludeAllNA = TRUE, critModelCheck=1e-08, confidence=.95,
probRound = TRUE, probDigits = 4L)

Arguments

iterMaxEM maximum number of iterations performed when method = "EM"; see DETAILS.

iterMaxNR maximum number of iterations of Newton-Raphson performed during an M-step
of EM; see DETAILS.

iterApproxBayes

number of simulated log-linear coefficient vectors to be drawn from their ap-
proximate posterior distribution when method="approxBayes".

imputeApproxBayes

if TRUE then, for each draw of the log-linear coefficients from their approximate
posterior distribution, the true frequencies will be imputed.

iterMCMC number of iterations of Markov chain Monte Carlo after the burn-in period when
method="MCMC".

burnMCMC number of iterations of Markov chain Monte Carlo performed as a burn-in pe-
riod, for which the reults are discarded. The total number of iterations performed
is burnMCMC+iterMCMC.

thinMCMC thinning interval for saving the results from MCMC as a series.

imputeEvery imputation interval for saving imputed frequencies for the complete-data table.
If 0, then no imputations are saved.

saveProbSeries if TRUE then the simulated values of cell probabilities from MCMC will be stored
as a series.

18 cvamControl

typeMCMC either "DA" (data augmentation) or "RWM" (random-walk Metropolis); see DE-
TAILS.

tuneDA tuning parameters for data augmentation MCMC; see DETAILS.

tuneRWM tuning parameter for random-walk Metropolis MCMC; see DETAILS.

stuckLimit criterion for deciding if the MCMC algorithm has gotten stuck.
startValDefault

method used to obtain default starting values for parameters if no starting values
are provided. "center" begins in the center of the parameter space, which
assigns equal probability to all non-structural zero cells in the complete-data
table. "uniform" draws random starting values from a uniform distribution on
the cell probabilities.

startValJitter standard deviation for Gaussian random noise added to starting values. If cvam
is called with saturated=FALSE, the log-linear coefficients are perturbed by
this amount; if saturated=TRUE, the log-cell probabilities are perturbed by this
amount and renormalized to sum to one.

critEM convergence criterion for EM stopping rule; see DETAILS.

critNR convergence criterion for Newton-Raphson stopping rule in M-step of EM; see
DETAILS.

critBoundary criterion for testing whether any estimated cell means are close to zero, in which
case a warning is given.

ncolMaxMM limit on the number of columns allowed for a log-linear model matrix.

excludeAllNA if TRUE, then cases for which all modeled variables are missing will be excluded
from the model fitting procedure, because they only contribute constant terms to
the observed-data loglikelihood function.

critModelCheck criterion for checking the log-linear model matrix for linear dependencies among
the columns.

confidence confidence coefficient for interval estimates, used when estimates are requested
in the call to cvam.

probRound if TRUE, estimated probabilities will be rounded.

probDigits number of digits for rounding estimated probabilities.

Details

When cvam is called with method="EM", it performs an EM algorithm. At each E-step, observations
with missing or coarsened values are apportioned to cells of the complete-data table in the expected
amounts determined by the current estimated parameters. At the M-step, the a log-linear model is
fit to the predicted complete-data frequencies from the E-step, using a Newton-Raphson procedure
if saturated=FALSE. The EM algorithm is stopped after iterMaxEM iterations, or when the max-
imum absolute difference in cell means from one iteration to the next is no greater than critEM.
The Newton-Raphson procedure in each M-step is stopped after iterMaxNR iterations or when the
maximum absolute difference in cell means from one iteration to the next is no greater than critNR.

When cvam is called with method="MCMC", the algorithm that is run depends on typeMCMC and on
whether the model is fit with saturated=TRUE.

cvamEstimate 19

• If saturated=FALSE and typeMCMC="DA", then the algorithm is a data-augmentation proce-
dure that resembles EM. At each cycle, observations with missing or coarsened values are
randomly allocated to cells of the complete-data table by drawing from a multinomial dis-
tribution, and the log-linear coefficients are updated using one step of a Metropolis-Hastings
algorithm that mimics Newton-Raphson and conditions on the allocated frequencies. The
proposal distribution is multivariate-t and can be adjusted by tuning constants in tuneDA, a
numeric vector containing the degrees of freedom, step size and scale factor.

• If saturated=FALSE and typeMCMC="RWM", the observations with missing or coarsened val-
ues are not allocated, and the log-linear coefficients are updated by a step of random-walk
Metropolis. The proposal is mutivariate-t and can be adjusted by tuning constants in tuneRWM,
a numeric vector containing the degrees of freedom and scale factor.

• If saturated=TRUE, then the algorithm is a data-augmentation procedure that requires no
tuning.

Full details on the EM and MCMC procedures are given in the Appendix of the vignette Log-Linear
Modeling with Missing and Coarsened Values Using the cvam Package.

Value

a list of control parameters for internal use by the function cvam.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

See Also

cvam

Examples

display all control parameters and their default values
cvamControl()

cvamEstimate Obtain Estimated Probabilities from a Fitted Model

Description

After fitting a log-linear model with cvam, the fitted model object may be passed to this function to
obtain estimated marginal and conditional probabilities for model factors.

20 cvamEstimate

Usage

cvamEstimate(estimate, obj, meanSeries = TRUE,
confidence = obj$control$confidence,
probRound = obj$control$probRound, probDigits = obj$control$probDigits, ...)

S3 method for class 'cvamEstimate'
print(x, showHeader = TRUE, ...)

S3 method for class 'cvamEstimateList'
print(x, showHeader = TRUE, ...)

Arguments

estimate a formula or list of formulas indicating the desired probabilities; see DETAILS.
obj an object produced by cvam containing results from a model fit
meanSeries applies when obj contains results from a simulation run. If TRUE, then the re-

quested estimates are computed based on a running mean of cell probabilities
over all iterations after the burn-in period. If FALSE, then the requested estimates
are based only on the cell probabilities from the final iteration, and (assuming
the run was sufficiently long, if it is MCMC) can be regarded as a single draw
from their posterior distribution.

confidence confidence coefficient for asymmetric interval estimates; see DETAILS.
probRound if TRUE, probabilities will be rounded.
probDigits number of digits for rounding probabilities.
x a set of estimates to be printed.
showHeader if TRUE, a descriptive header is printed.
... additional arguments to be passed to print.

Details

The argument estimate should be a one-sided formula or a list of one-sided formulas, with vari-
ables separated by ‘+’, and variables to be conditioned on appearing after ‘|’. For example, ~ A
requests marginal probabilities for every level of A; ~ A + B | C + D requests conditional probabili-
ties for every level combination of A and B given every level combination of C and D.

• If obj was produced with saturated=FALSE and method="EM", then standard errors for all
probabilities are computed using Taylor linearization, also known as the delta method, based
on the asymptotic covariance matrix for the log-linear coefficients.

• If obj was produced with saturated=FALSE and method="MCMC" or "approxBayes", then
standard errors are computed with Taylor linearization, based on the covariance matrix for the
simulated log-linear coefficients from all iterations after the burn-in period.

• If obj was produced with saturated=TRUE, then standard errors are not computed.

A symmetric confidence interval for a probability may be problematic, especially if the estimate
is close to zero or one. Asymmetric confidence intervals are computed by applying a normal ap-
proximation on the logistic (log-odds) scale and translating the endpoints back to the probability
scale.

cvamImpute 21

Value

if estimate is a single formula, this function returns a data frame containing estimated probabil-
ities, standard errors, and endpoints of approximate confidence intervals. If estimate is a list of
formulas, then a list of data frames is returned.

Note

Estimates may also be requested when fitting a model with cvam, by providing a formula or list of
formulas to the optional argument estimate.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam cvamPredict cvamImpute cvamLik

Examples

fit <- cvam(~ Sex * PolViews * AbAny, data=abortion2000)
cvamEstimate(list(~ AbAny | Sex, ~ AbAny | PolViews), fit)

cvamImpute Impute Data from a Fitted Model

Description

After fitting a log-linear model with cvam, the fitted model object may be passed to this function,
along with a dataset containing missing or coarsened values, to randomly impute the true data from
their predictive distribution given the observed data and parameters from the fitted model.

Usage

cvamImpute(obj, data, freq, meanSeries = FALSE, synthetic=FALSE)

22 cvamImpute

Arguments

obj an object produced by cvam containing results from a model fit
data data frame for imputation, possibly different from the data used to fit the model

contained in obj

freq variable containing frequencies for data. If omitted, all frequencies are taken to
be 1, meaning that the imputation frame is assumed to contain microdata.

meanSeries applies when obj contains results from a simulation run. If TRUE, then the im-
putations are based on a running mean of cell probabilities over all iterations
after the burn-in period. If FALSE, then the imputations are based only on the
cell probabilities from the final iteration, and (assuming the run was sufficiently
long, if MCMC) can be regarded as a single draw from their posterior distribu-
tion. See DETAILS below.

synthetic if TRUE, then observed values for all variables in the data frame (excluding vari-
ables that are conditioned on in the model and regarded as fixed) are set to NA
and imputed, producing a dataset that is fully synthetic.

Value

a data frame containing imputed data. If freq was given, the data frame has one row for each cell
in the complete-data table and a variable freq containing the frequencies. If freq was not given,
the data frame has one row for each microdata observatiom.

Note

When this function is used within a process for multiple imputation, meanSeries should be set to
FALSE, otherwise the imputations will not correctly reflect uncertainty about model parameters.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam, cvamEstimate, cvamPredict, cvamLik

Examples

impute from a grouped dataset with frequencies
fit <- cvam(~ V1 * V2, freq=n, data=crime)
cvamImpute(fit, data=crime, freq=n)
impute microdata
fit <- cvam(~ Sex * PolViews * AbAny, data=abortion2000)
impData <- cvamImpute(fit, data=abortion2000)
head(impData)

cvamLik 23

cvamLik Likelihood of Observed Data Patterns

Description

After fitting a log-linear model with cvam, the fitted model object may be passed to this function,
along with a dataset that may contain missing or coarsened values, to compute the likelihood of
each pattern of possibly incomplete or coarsened data for subset of variables, possibly conditioned
upon another subset of variables

Usage

cvamLik(form, obj, data, meanSeries = TRUE)

Arguments

form a formula indicating which variables to consider, and which variables to condi-
tion on, when computing the likelihood

obj an object produced by cvam containing results from a model fit

data data frame for computing the likelihood values, possibly different from the data
used to fit the model contained in obj

meanSeries applies when obj contains results from a simulation run. If TRUE, then the re-
quested likelihood values are based on a running mean of cell probabilities over
all iterations after the burn-in period. If FALSE, then the requested values are
based only on the cell probabilities from the final iteration, and (assuming the
run was sufficiently long, if MCMC) can be regarded as a single draw from their
posterior distribution.

Details

For structural zeros, 0/0 is returned as 0. If any variables are being conditioned on in form, they
must not contain any missing or coarsened values.

Value

A data frame containing the model variables, with a variable likVall holding the likelihood values

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

24 cvamPredict

See Also

cvam, cvamEstimate, cvamImpute, cvamPredict

Examples

result <- cvam(~ V1 * V2, freq=n, data=crime)
cvamLik(~ V1 + V2, result, data=crime)

cvamPredict Predict Missing or Coarsened Values from a Fitted Model

Description

After fitting a log-linear model with cvam, the fitted model object may be passed to this function,
along with a dataset containing missing or coarsened values, to predict one or more variables from
their predictive distribution given the observed data and parameters from the fitted model.

Usage

cvamPredict(form, obj, data, freq, meanSeries = TRUE, sep = ".")

Arguments

form a one-sided formula indicating the variable or variables to be predicted, with
variables separated by ‘+’

obj an object produced by cvam containing results from a model fit

data data frame for prediction, possibly different from the data used to fit the model
contained in obj

freq variable containing frequencies for data. If omitted, all frequencies are taken to
be 1, meaning that the prediction frame is assumed to contain microdata.

meanSeries applies when obj contains results from a simulation run. If TRUE, then the re-
quested predictions are based on a running mean of cell probabilities over all
iterations after the burn-in period. If FALSE, then the requested predictions are
based only on the cell probabilities from the final iteration, and (assuming the
run was sufficiently long, if MCMC) can be regarded as a single draw from their
posterior distribution.

sep character sting used to separate the levels of multiple variables being predicted

Details

Predictions from this function are unlike predictions from a regression model. In regression, pre-
diction is to compute the estimated mean response ar specific values of the predictors. With this
function, predictions are based on the predictive distribution for one or more variables given all
the observed data, including the variable(s) to be predicted if they are seen. The prediction for a
variable that is seen will assign a probability of one to the seen value and zero probability to other
values.

cvamPrior 25

Value

A data frame containing the predicted probabilities or frequencies, with an attribute colFrame that
identifies its columns

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam, cvamEstimate, cvamImpute, cvamLik

Examples

fit <- cvam(~ V1 + V2, freq=n, data=crime)
cvamPredict(~ V1, fit, data=crime, freq=n) # predict frequencies
cvamPredict(~ V1, fit, data=crime) # predict probabilities

cvamPrior Data-Augmentation Prior for Coarsened Factor Loglinear Model

Description

The cvam function fits loglinear models to coarsened categorical variables. The cvamPrior function
creates an object to pass to cvam to represent prior information that is incorporated into the model
fit.

Usage

cvamPrior(obj = list(), flatten = 0, ridge = 0, intensity = 1)

Arguments

obj a list of prior information nuggets to apply to the complete-data frequency table;
see DETAILS.

flatten a prior information nugget to be divided equally across all cells of the complete-
data frequency table; see DETAILS.

ridge a ridge factor to apply to the log-linear coefficients; see DETAILS.

intensity a factor applied simultaneously to all prior information to scale it up or down;
see DETAILS.

26 cvamPrior

Details

An object produced by this function, when passed to cvam through its prior argument, incorporates
prior information as

• a flattening constant, a positive value that is divided equally among all non-structural zero
cells of the complete-data table, and

• prior nuggets, which take the form of coarsened-data frequencies that are assigned to selected
cells or groups of cells.

Log-linear models fit with saturated=FALSE can also accept a ridge factor, which acts upon the
coefficients in a manner similar to ridge regression, shrinking the estimated coefficients toward zero
and stabilizing its estimated covariance matrix. The added information is equivalent to a multivari-
ate normal prior density centered at zero with prior precision (inverse covariance) matrix equal to
the ridge factor times the identity matrix.

The intensity factor provides a simple way to strengthen or weaken the overall amount of prior
information, which is useful for sensitivity analyses. The flattening constant, nugget frequencies and
ridge factor are all multiplied by intensity. Setting intensity=2 doubles the prior information,
intensity=.5 cuts it in half, and so on.

Value

an object of class "cvamPrior", designed for use by the function cvam.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam, coarsened

Examples

fit a saturated model to a four-way table
fit <- cvam(~ Sex*CenRace*Hisp*Party, data=abortion2000,
saturated=TRUE)

add a flattening constant
fit <- cvam(~ Sex*CenRace*Hisp*Party, data=abortion2000,
saturated=TRUE, prior=cvamPrior(flatten=10))

fit with saturated=FALSE and no prior information, and
notice how large the SEs are
fit <- cvam(~ Sex*CenRace*Hisp*Party, data=abortion2000,
saturated=FALSE)

head(get.coef(fit, withSE=TRUE))

dropCoarseLevels 27

add a very mild ridge factor and notice how the SEs
have become reasonable
fit <- cvam(~ Sex*CenRace*Hisp*Party, data=abortion2000,
saturated=FALSE, prior=cvamPrior(ridge=.1))

head(get.coef(fit, withSE=TRUE))

add s few prior nuggets to stabilize the distribution
of Party within a rare category
nuggetList <- list(

list(CenRace="Black", Hisp="Hisp", Party="Dem", freq=1),
list(CenRace="Black", Hisp="Hisp", Party="Rep", freq=1),
list(CenRace="Black", Hisp="Hisp", Party="Ind/Oth", freq=1))

myPrior <- cvamPrior(nuggetList, flatten=10)
summary(myPrior)
fit <- cvam(~ Sex*CenRace*Hisp*Party, data=abortion2000,
saturated=FALSE, prior=myPrior)

dropCoarseLevels Remove Coarse Levels from a Coarsened Factor

Description

A coarsened factor, produced by the function coarsened, has two types of levels: base levels,
to represent observations that are fully known, and coarse levels, to represent observations that
are partially or completely missing. The function dropCoarseLevels converts a coarsened factor
to a factor or ordered factor by removing all of the coarse levels and setting the corresponding
observations to NA.

Usage

dropCoarseLevels(x)

Arguments

x a factor or coarsened factor

Details

If the only coarse level of x is NA, then no information is lost when dropCoarseLevels is applied.
If x has other non-empty coarse levels, then the partial information carried by those observations is
effectively discarded.

Value

A factor or ordered factor, obtained by removing the coarse levels of x and setting the observations
in those levels to NA.

If x is a factor but not a coarsened factor, then it is returned unchanged.

28 get.coef

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information about coarsened factors in the cvam package, see the vignette Understanding
Coarsened Factors in cvam.

See Also

cvam, coarsened, baseLevels, is.naCoarsened

Examples

fac <- factor(c("red", "green", NA, "yellow", "notRed", "green"))
cFac <- coarsened(fac,

levelsList = list("notRed" = c("green", "yellow")))
dropCoarseLevels(cFac)

get.coef Extract Information from a Coarsened-Variable Model

Description

This group of functions will extract various summaries from a model fit by cvam, either with the
EM algorithm or by Markov chain Monte Carlo.

Usage

get.coef(obj, withSE = FALSE, meanSeries = TRUE, msgIfNone = TRUE)

get.covMat(obj, msgIfNone = TRUE)

get.estimates(obj, msgIfNone = TRUE)

get.loglik(obj, msgIfNone = TRUE)

get.logP(obj, msgIfNone = TRUE)

get.mfTrue(obj)

get.modelMatrix(obj, msgIfNone = TRUE)

get.offset(obj, mfTrue = FALSE, msgIfNone = TRUE)

get.strZero(obj, mfTrue = FALSE, msgIfNone = TRUE)

get.coef 29

get.fitted(obj, type=c("prob", "mean", "logMean"), mfTrue = TRUE,
meanSeries = TRUE, msgIfNone = TRUE)

get.imputedFreq(obj, msgIfNone = TRUE)

get.minus2logPSeries(obj, startValShift = TRUE,
msgIfNone = TRUE, coda = (obj$method == "MCMC"))

get.coefSeries(obj, msgIfNone = TRUE, coda = (obj$method == "MCMC"))

get.probSeries(obj, levelNames=TRUE, sep=".",
msgIfNone = TRUE, coda = (obj$method == "MCMC"))

Arguments

obj an object resulting from a call to cvam with method = "EM" or method = "MCMC"

withSE if TRUE, then get.coef will return a data frame containing estimated log-linear
coefficients, standard errors, t-statistics and p-values; if FALSE, then only a vec-
tor of coefficients is given.

mfTrue if TRUE, then get.offset, get.strZero and get.fitted will return a data
frame with one row per cell, with all model variables (the non-coarsened ver-
sions) present as factors, and with another variable named (depending on which
function was called) offset, strZero or fit containing the requested values.
If FALSE, then get.offset, get.strZero and get.fitted will return a vector
containing the requested values.

meanSeries applies when obj is the result from a simulation run. If TRUE, results will be
based on from a running average of simulated parameters over all iterations
after the burn-in period. If FALSE, results will be based only on the simulated
parameter values at the end of the run.

msgIfNone if TRUE then, if the get procedure fails, an informative message is given explain-
ing why the requested summary cannot be obtained. For example, get.coef
will fail to return coefficients from a model fit with cvam(...,saturated =
TRUE) because no model matrix is created and the log-linear coefficients are not
defined. If FALSE, then these messages are suppressed.

type type of fitted values to be returned by get.fitted. "prob" returns cell proba-
bilities conditioned on variables fixed by the model (if any); "mean" returns cell
means from the log-linear model; and "logMean" returns log-cell means from
the log-linear model (i.e., the linear predictor).

startValShift the function get.minus2logPSeries extracts a saved series from an MCMC
run containing the values of (minus 2 times) the log-posterior density func-
tion. If startValShift is true, the series is shifted by (minus 2 times) the
log-posterior density at the starting value, if the starting value appears to be a
mode.

coda if TRUE, the series from an MCMC run is returned as an mcmc object for plotting
and diagnostic analysis with the coda package. If FALSE, a one-dimensional se-

30 get.coef

ries is returned as a numeric vector, and a multidimensional series is returned
as a numeric matrix with rows corresponding to iterations and columns corre-
sponding to elements of the multidimensional quantities being monitored.

levelNames the get.probSeries function extracts a saved series of probabilities from an
MCMC run corresponding to cells of the complete-data table (i.e., the rows of
mfTrue). If levelNames is TRUE, names for the cell probabilities are constructed
from the levels of the factors in mfTrue. As the number of variables in the model
grows, these names can become unwieldly, and setting levelNames to FALSE
omits the names.

sep a character string used to separate the levels of multiple factors when levelNames
is TRUE.

Details

The series objects returned by get.minus2logPSeries, get.coefSeries and get.probSeries
omit results from the burn-in period, if any, and may also be thinned. The default behavior is no
burn-in period and no thinning. The burn-in period and thinning interval are set by components
of the control argument to cvam, via the function cvamControl; the relevant components are
control$burnMCMC and control$thinMCMC. By default, cvam does not save cell probabilities. To
save them, set control$saveProbSeries to TRUE.

get.imputedFreq returns multiple imputations of frequencies for the complete-data table gener-
ated and stored during an MCMC run after the burn-in period. The default behavior is no imputa-
tion. This can be changed by setting control$imputeEvery to an integer greater than zero.

Other useful information from a model fit can be extracted with the summary method for a cvam
object, and with the functions cvamEstimate, cvamPredict, cvamLik, and cvamImpute.

Value

get.coef returns a vector of estimated coefficients from the log-linear model if withSE=FALSE;
if withSE=TRUE, it returns a data frame containing coefficients, standard errors, t-statistics and p-
values.

get.covMat returns an estimated covariance matrix for the estimated coefficients.

get.estimates returns a data frame or a list of data frames containing the estimates held in obj.

get.loglik and get.logP return the value of the loglikelihood function or log-posterior density
from the beginning of the final iteration of EM or MCMC. If the model was fit using cvam(...,saturated=TRUE),
the likelihood is based on a multinomial or product-multinomial distribution over the cells of the
complete-data table. If the model was fit as a log-linear approach using cvam(...,saturated=FALSE),
the likelihood is based on a surrogate Poisson model.

get.mfTrue returns a data frame with one row per cell of the complete-data table. The vari-
ables in this data frame include every factor appearing in the model (the non-coarsened versions)
and another variable named freq. If the model was fit using cvam(...,method="EM"), freq
contains the predicted cell frequencies at the final iteration of EM. If the model was fit using
cvam(...,method="MCMC"), freq contains a running average of imputed cell frequencies over
all iterations of MCMC after the burn-in period. In either case, if the data used to fit the model
contain no missing or coarsened values, then freq will be equal to the observed frequencies.

get.coef 31

get.modelMatrix returns the model matrix for the log-linear model. The rows of the model matrix
correspond to the rows of mfTrue, and the columns correspond to terms created from the factors in
mfTrue.

get.offset retrieves the offset for the log-linear model. If mfTrue is TRUE, it returns the data frame
mfTrue with a numeric variable named offset. If mfTrue is FALSE, it returns a numeric vector of
length NROW(mfTrue).

get.strZero retrieves the logical values indicating whether each cell is structural zero. If mfTrue
is TRUE, it returns the data frame mfTrue with a logical variable named strZero. If mfTrue is
FALSE, it returns a logical vector of length NROW(mfTrue).

get.fitted retrieves fitted values from the log-linear model. If type="prob", the fitted values are
cell probabilities conditioned on any variables fixed in the model. If type="mean" or "logMean",
the fitted values are cell means or log-cell means from the log-linear model. If mfTrue is TRUE, the
function returns the data frame mfTrue with a numeric variable named fit. If mfTrue is FALSE, it
returns a numeric vector of length NROW(mfTrue).

get.imputedFreq returns the data frame mfTrue, with the freq variable replaced by multiply
imputed versions of the frequencies for the complete-data table.

get.minus2logPSeries returns a series of (minus 2 times) the log-posterior density values from
the iterations of MCMC, either as a numeric vector or as an mcmc object used by the coda package.

get.coefSeries returns a series of log-linear coefficients from the iterations of MCMC, either as
a numeric matrix or as an mcmc object used by the coda package.

get.probSeries returns a series of cell probabilities from the iterations of MCMC, either as a
numeric matrix or as an mcmc object used by the coda package.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

For information about coda, see:

Martyn Plummer, Nicky Best, Kate Cowles and Karen Vines (2006). CODA: Convergence Diag-
nosis and Output Analysis for MCMC, R News, vol 6, 7-11.

See Also

cvam, summary.cvam, cvamControl, cvamEstimate, cvamPredict, cvamImpute, cvamLik

Examples

fit <- cvam(~ V1 * V2, data=crime, freq=n)
get.coef(fit, withSE=TRUE)
get.covMat(fit)
get.fitted(fit, type="mean")

set.seed(6755)

32 hivtest

fit <- cvam(fit, method="MCMC",
control=list(iterMCMC=5000, imputeEvery=500))

get.imputedFreq(fit)

Not run: plot(get.coefSeries(fit)) # coda trace and density plots

hivtest HIV test dataset

Description

This dataset concerns the diagnostic accuracy of tests for HIV infection. Four different tests (A, B,
C, and D) were applied to 428 high-risk patients. The result from each test is either negative ("neg")
or positive ("pos"). Yang and Becker (1997) applied latent-class analysis to these data to estimate
the sensitivity and specificity of these tests in the absence of a gold standard.

Usage

hivtest

Format

a data frame with 9 rows and 5 variables:

A test result from radioimmunoassay (RIA) utilizing recombinant agl21

B test result from RIA utilizing purified HIV p24

C test result from RIA utilizing purified HIV gpl20

D test result from enzyme-linked immunosorbent assay

COUNT frequency; number of patients exhibiting the given pattern of results

Source

Yang, I and Becker, M.P. (1997) Latent variable modeling of diagnostic accuracy. Biometrics, 53,
948-958.

is.naCoarsened 33

is.naCoarsened Missing-Value Indicators for Coarsened Factors

Description

A coarsened factor, produced by the function coarsened, stores missing values differently from
an ordinary factor. If the base R function is.na is applied to a coarsened factor, every element
of the result will be FALSE. The function is.naCoarsened is the suitable alternative to is.na for
coarsened factors.

Usage

is.naCoarsened(x)

Arguments

x a coarsened factor

Details

A coarsened factor, produced by the function coarsened, has two types of levels. Base levels
represent states of complete information, and coarse levels represent states of incomplete or missing
information. Each coarse level maps onto two or more base levels. The last coarse level is NA, which
maps onto every base level.

Value

A logical vector of the same length as x, with TRUE indicating that an element of x is NA, and FALSE
otherwise.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information about coarsened factors in the cvam package, see the vignette Understanding
Coarsened Factors in cvam.

See Also

cvam, coarsened, baseLevels, dropCoarseLevels

Examples

fac <- factor(c("red", "green", NA, "yellow", "notRed", "green"))
cFac <- coarsened(fac,

levelsList = list("notRed" = c("green", "yellow")))
is.naCoarsened(cFac)

34 latentFactor

latentFactor Latent Factor

Description

A latent factor is a categorical variable whose values are entirely missing. The function latentFactor
provides a convenient way to create a latent factor with a given number of base levels, which is use-
ful for latent-class modeling with cvam.

Usage

latentFactor(n, levels = 2L)

is.latentFactor(x)

Arguments

n length of the factor

levels either an integer specifying the number of base levels, or a character vector
containing labels for the base levels

x an object to be tested

Value

For latentFactor, a latent coarsened factor of length n; for is.latentFactor, TRUE or FALSE.

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignettes Understanding Coarsened Factors in cvam
and Log-Linear Modeling with Missing and Coarsened Values Using the cvam Package.

See Also

cvam, coarsened, baseLevels, is.naCoarsened

Examples

fit latent class model to hivtest data
hivtest$L <- latentFactor(NROW(hivtest), 2)
set.seed(125)
fit <- cvam(~ L*A + L*B + L*C + L*D, data=hivtest, freq=COUNT,

control=list(startValJitter=.1))
cvamEstimate(list(~L, ~A|L, ~B|L, ~C|L, ~D|L), fit)

microUCBAdmissions 35

microUCBAdmissions UC Berkeley Graduate Admissions Microdata

Description

The dataset UCBAdmissions, distributed with the R datasets package, is a three-dimensional ar-
ray that classifies applicants to graduate school at the University of California, Berkeley in 1973
by sex, department, and admission status. That table, first published by Bickel et al. (1975), is
frequently used in textbooks and statistics courses to illustrate Simpson’s paradox. This dataset,
microUCBAdmissions is a simulated data frame with three factors and one row per individual;
when the factors are tabulated, they reproduce the frequencies in UCBAdmissions.

Usage

microUCBAdmissions

Format

a data frame with 4,526 rows and 3 factors:

Admit "Admitted" or "Rejected"

Gender "Male" or "Female"

Dept "A", "B", "C", "D", "E", or "F"

Source

Bickel, P.J., Hammel, E.A. and O’Connell, J.W. (1975) Sex bias in graduate admissions: Data from
Berkeley. Science, 187, 398-403.

miInference Combine results from analyses after multiple imputation

Description

This function combines the results from data analyses performed after multiple imputation using
methods described by Rubin (1987) and others.

Usage

miInference(est.list, std.err.list, method = "scalar",
df.complete = NULL)

S3 method for class 'miInference'
print(x, ...)

36 miInference

Arguments

est.list a list of estimates to be combined. Each component of this list should be a scalar
or vector containing point estimates from the analysis of an imputed dataset.
This list should have M components, where M is the number of imputations,
and all components should have the same length.

std.err.list a list of standard errors to be combined. Each component of this list should be a
scalar or vector of standard errors associated with the estimates in est.list.

method how are the estimates to be combined? At present, the only type allowed is
"scalar", which means that estimands are treated as one-dimensional entities.
If est.list contains vectors, inference for each element of the vector is carried
out separately; covariances among them are not considered.

df.complete degrees of freedom assumed for the complete-data inference. This should be
a scalar or a vector of the same length as the components of est.list and
std.err.list.

x a result from miInference.

... values to be passed to the methods.

Details

If df.complete = NULL or Inf, the degrees of freedom are computed by the method of Rubin (1987,
Chap.3), which assumes that if there were no missing data, the usual normal approximation for large
samples would be appropriate, i.e. that a 95% interval would be computed as the estimate plus or
minus 1.96 standard errors. Otherwise, the degrees of freedom are computed by the method of
Barnard and Rubin (1999), which assumes that an approximate 95% interval without missing data
would be the estimate plus or minus qt(.975,df.complete) standard errors.

The result from this function is a list whose class attribute has been set to "miInference". If
this list is displayed or printed via the generic function print, it will be formatted into a table
resembling the output from a regression analysis with columns for the estimates, standard errors,
t-ratios (estimates divided by their standard errors) and p-values for testing the null hypothesis that
each estimate is zero.

Value

a list with the following components:

names character-string labels for the estimands. This is derived from the names at-
tribute, if any, of the components of est.list.

est combined estimate(s).

std.err standard error(s) for est.

df degrees of freedom for Student-t approximation. For example, 95% intervals
can be computed as est plus or minus qt(.975,df)*std.err.

p p-value(s) for testing the null hypothesis that each estimand is zero against a
two-tailed alternative.

rel.incr estimated relative increase(s) in variance due to nonresponse.

mis.inf estimated rate(s) of missing information.

seatbelt 37

Note

Rubin (1987) defined the rate of missing information as rel.incr + 2/(df+3) divided by (rel.incr+1),
which estimates the information lost due to missing values and due to the fact that the number of
multiple imputations is finite. We define it as rel.incr divided by (rel.incr+1), the information
lost due to missing values, which is consistent with the formulas of Barnard and Rubin (1999).

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

Barnard, J. and Rubin, D.B. (1999) Small-sample degrees of freedom with multiple imputation.
Biometrika, 86, 948-955.

Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. New York: Wiley.

Examples

generate ten multiple imputations for 2x2 table, compute
log-odds ratios and standard errors, and combine
fitML <- cvam(~ V1 * V2, data=crime, freq=n) # run EM first
set.seed(54981)
result <- cvam(fitML, method="MCMC",

control=list(iterMCMC=5000, imputeEvery=500))
impData <- get.imputedFreq(result)[-(1:2)] # just the frequencies
est.list <- std.err.list <- as.list(1:10) # to hold the estimates and SEs
for(m in 1:10) {

f <- impData[,m]
est.list[[m]] <- log((f[1] * f[4]) / (f[2] * f[3]))
std.err.list[[m]] <- sqrt(sum(1/f))

}
miInference(est.list, std.err.list)

seatbelt Seatbelt Data

Description

This dataset, previously analyzed by Hochberg (1977), Chen (1989) and Schafer (1997), pertains to
the effectiveness of seatbelts for preventing injury in automobile accidents. In a sample drawn from
police reports, 80,084 accidents were classified by sex of the driver, degree of damage to the car
(low or high), seatbelt use (no, yes) and whether the driver was injured (no, yes). Experience had
shown that police tended to overestimate the proportion of drivers who were not using seatbelts and
were not injured. To evaluate those potential biases, a followup study was conducted with 1,796
additional accidents. In the followup, investigators obtained more reliable information on seatbelt
use and injury from personal interviews and hospital records.

38 summary.cvam

Usage

seatbelt

Format

a data frame with 80 rows and 8 variables:

source source of the data; "sample" indicates the original sample of police reports, and "followup"
indicates the followup study

sex sex of the driver ("M" or "F")

damage degree of damage to the automobile ("low" or "high")

belt.p whether the driver was wearing a seatbelt, according to the police report ("no" or "yes")

injury.p whether the driver was injured, according to the police report ("no" or "yes")

belt.f whether the driver was wearing a seatbelt, as determined in the followup study ("no" or
"yes")

injury.f whetherthe driver was injured, as determined in the followup study ("no" or "yes")

Source

Chen, T.T. (1989) A review of methods for misclassified categorical data in epidemiology. Statistics
in Medicine, 8, 1095-1106.

Hochberg, Y. (1977) On the use of double sampling schemes in analyzing categorical data with
misclassification errors. Journal of the American Statistical Association, 72, 914-921.

Schafer, J.L. (1997) Analysis of Incomplete Multivariate Data. London: Chapman & Hall/CRC
Press.

summary.cvam Summarize a cvam object

Description

Summarizes the result from a call to cvam

Usage

S3 method for class 'cvam'
summary(object, showCoef=TRUE, showEstimates=TRUE,

digits = 4L, ...)
S3 method for class 'cvam'
print(x, ...)
S3 method for class 'summary.cvam'
print(x, ...)

summary.cvam 39

Arguments

object an object resulting from a call to cvam containing results from a fitted model.

showCoef if TRUE, the table of coefficients will be displayed when the print method is
invoked.

showEstimates if TRUE, estimated marginal and conditional probabilities requested by the estimate
argument will be displayed when the print method is invoked.

digits for printing.

... additional arguments to be passed to methods.

x cvam or cvam.summary object

Value

for the summary method, an object of class "summary.cvam".

Author(s)

Joe Schafer <Joseph.L.Schafer@census.gov>

References

For more information, refer to the package vignette Log-Linear Modeling with Missing and Coars-
ened Values Using the cvam Package.

See Also

cvam

Examples

saturated model for hivtest data
result <- cvam(~ A*B*C*D, data=hivtest, freq=COUNT)
summary(result)

Index

∗ datasets
abortion2000, 3
cig2019, 8
crime, 12
hivtest, 32
microUCBAdmissions, 35
seatbelt, 37

∗ package
cvam-package, 2

[.coarsened (coarsened), 10
[<-.coarsened (coarsened), 10
[[.coarsened (coarsened), 10
[[<-.coarsened (coarsened), 10

abortion2000, 3
addNA, 12
anova.cvam, 5

baseLevels, 7, 11, 12, 28, 33, 34

cig2019, 8
coarseLevels, 11
coarseLevels (baseLevels), 7
coarsened, 7, 8, 10, 16, 26–28, 33, 34
crime, 12
cvam, 5, 6, 8, 12, 13, 17, 19–26, 28, 29, 31, 33,

34, 39
cvam-package, 2
cvamControl, 14, 16, 17, 30, 31
cvamEstimate, 15, 16, 19, 22, 24, 25, 30, 31
cvamImpute, 21, 21, 24, 25, 30, 31
cvamLik, 21, 22, 23, 25, 30, 31
cvamPredict, 21, 22, 24, 24, 30, 31
cvamPrior, 6, 14, 16, 25

dropCoarseLevels, 8, 12, 27, 33
droplevels, 11
droplevels.coarsened (coarsened), 10

get.coef, 16, 28
get.coefSeries (get.coef), 28

get.covMat (get.coef), 28
get.estimates (get.coef), 28
get.fitted (get.coef), 28
get.imputedFreq (get.coef), 28
get.loglik (get.coef), 28
get.logP (get.coef), 28
get.mfTrue (get.coef), 28
get.minus2logPSeries (get.coef), 28
get.modelMatrix (get.coef), 28
get.offset (get.coef), 28
get.probSeries (get.coef), 28
get.strZero (get.coef), 28
glm, 2

hivtest, 32

is.coarsened (coarsened), 10
is.latentFactor (latentFactor), 34
is.naCoarsened, 8, 12, 28, 33, 34

latentFactor, 34
loglin, 2

mapping (baseLevels), 7
microUCBAdmissions, 35
miInference, 35

nBaseLevels (baseLevels), 7
nCoarseLevels (baseLevels), 7

print.coarsened (coarsened), 10
print.cvam (summary.cvam), 38
print.cvamEstimate (cvamEstimate), 19
print.cvamEstimateList (cvamEstimate),

19
print.cvamPrior (cvamPrior), 25
print.miInference (miInference), 35
print.summary.cvam (summary.cvam), 38
print.summary.cvamPrior (cvamPrior), 25

relevel, 11

40

INDEX 41

relevel.coarsened (coarsened), 10
reorder, 11
reorder.coarsened (coarsened), 10
rep, 11
rep.coarsened (coarsened), 10

seatbelt, 37
summary.cvam, 16, 31, 38
summary.cvamPrior (cvamPrior), 25

	cvam-package
	abortion2000
	anova.cvam
	baseLevels
	cig2019
	coarsened
	crime
	cvam
	cvamControl
	cvamEstimate
	cvamImpute
	cvamLik
	cvamPredict
	cvamPrior
	dropCoarseLevels
	get.coef
	hivtest
	is.naCoarsened
	latentFactor
	microUCBAdmissions
	miInference
	seatbelt
	summary.cvam
	Index

