Package ‘expands’

April 9, 2017

Type Package

Title Expanding Ploidy and Allele-Frequency on Nested Subpopulations

Version 2.0.0

Date 2017-04-09

Author Noemi Andor

Maintainer Noemi Andor <expands.r@gmail.com>

Description Expanding Ploidy and Allele Frequency on Nested Subpopulations (expands) characterizes coexisting subpopulations in a single tumor sample using copy number and allele frequencies derived from exome- or whole genome sequencing input data (<http://www.ncbi.nlm.nih.gov/pubmed/24177718>). The model detects coexisting genotypes by leveraging run-specific tradeoffs between depth of coverage and breadth of coverage. This package predicts the number of clonal expansions, the size of the resulting subpopulations in the tumor bulk, the mutations specific to each subpopulation, tumor purity and phylogeny. The main function runExPANdS() provides the complete functionality needed to predict coexisting subpopulations from single nucleotide variations (SNVs) and associated copy numbers. The robustness of subpopulation predictions increases with the number of mutations provided. It is recommended that at least 200 mutations are used as input to obtain stable results. Updates in version 2.0 include: (i) copy-neutral LOH are now modelled; (ii) more robust calculation of cell frequency probabilities from kernel density estimates instead of Gaussian mixtures. Further documentation and FAQ available at <http://dna-discovery.stanford.edu/software/expands>.

License GPL-2

URL https://github.com/noemiandor/expands,
 https://groups.google.com/d/forum/expands

Depends R (>= 2.10)

Imports rJava (>= 0.5-0), flexmix (>= 2.3), matlab (>= 0.8.9), moments (>= 0.13), ape (>= 3.2)

Suggests phylobase (>= 0.6.8)

SystemRequirements Java (>= 1.5)

NeedsCompilation no
Description

Assigns mutations to previously predicted subpopulations.

Usage

```r
assignMutations(dm, finalsps, max_PM=6)
```

Arguments

- `dm` Matrix in which each row corresponds to a mutation. Has to contain at least the following column names:
 - `chr` - the chromosome on which each mutation is located;
 - `startpos` - the genomic position of each mutation;
 - `AF_Tumor` - the allele-frequency of each mutation;
 - `PN_B` - the ploidy of the B-allele in normal (non-tumor) cells (binary variable: 1 if the mutation is a germline variant, 0 if somatic).

- `finalsps` Matrix in which each row corresponds to a subpopulation, as calculated by `clusterCellFrequencies`.

- `max_PM` Upper threshold for the number of amplicons per mutated cell. See also `cellfrequency_pdf`.

Details

Each mutated locus \(l \) is assigned to the subpopulation \(C \), whose size \(f_C \) can best explain the allele frequency (AF) and copy number (CN) observed at \(l \). Four alternative cell frequency probabilities, \(P_x(f_C) \), are calculated for the SNV at locus \(l \), with \(x \) denoting one of the four alternative evolutionary scenarios (see also cellfrequency_pdf). The SNV is assigned to subpopulation:

\[
C := \text{argmax}_C(P_s(f_C), P_p(f_C), P_c(f_C), P_i(f_C))
\]

(see cellfrequency_pdf).

The mutated loci assigned to each subpopulation cluster represent the genetic profile of each predicted subpopulation. The assignment between subpopulation \(C \) and locus \(l \) only implies that the SNV at \(l \) has been first propagated during the clonal expansion that gave rise to \(C \). So SNVs present in \(C \) may not be exclusive to \(C \) but may also be present in subpopulations smaller than \(C \). Whether or not this is the case can sometimes be inferred from the phylogenetic structure of the subpopulation composition. See also buildPhylo.

Value

A list with two fields:

- \(\text{dm} \)
 - The input matrix with seven additional columns:
 - \(\text{SP} \) - the subpopulation to which the point mutation has been assigned;
 - \(\text{PM}_B \) - the ploidy of the B-allele at the mutated genomic locus, in the assigned subpopulation (SP).
 - \(\text{PM} \) - the total ploidy of all alleles, in the assigned subpopulation (SP).
 - \(\text{SP}_\text{cnv} \) - if the point mutation lies within an amplified or deleted region: the subpopulation to which the copy number variation has been assigned. This entry has the same value as \(\text{SP} \) if and only if: i) the SNV and the CNV were propagated during the same clonal expansion or ii) the SNV lies within a copy neutral region.
 - \(\text{PM}_B \text{cnv} \) - the ploidy of the B-allele, in the CNV harboring subpopulation (SP_cnv).
 - \(\text{PM} \text{cnv} \) - the total ploidy of all alleles, in the CNV harboring subpopulation (SP_cnv).
 - \(\%\maxP \) - confidence of the point mutation assignment to SP.

- \(\text{finalSPs} \)
 - The input matrix of subpopulations with column nMutations updated according to the total number of mutations assigned to each subpopulation.

Author(s)

Noemi Andor

References

assignQuantityToMutation

See Also

clustercellfrequencies

assignQuantityToMutation

Quantity assignment (copy number) to mutations

Description

Assigns a quantity to each mutated locus. Currently, the only assignable quantity is the average ploidy (among all cells) of the locus in which the mutation is embedded.

Usage

assignQuantityToMutation(dm, cbs, quantityColumnLabel="CN_Estimate")

Arguments

dm

Matrix in which each row corresponds to a mutation. Has to contain at least the following column names:

- chr - the chromosome on which each mutation is located;
- startpos - the genomic position of each mutation.

cbs

Matrix in which each row corresponds to a copy number segment as calculated by a circular binary segmentation algorithm. Has to contain at least the following column names:

- chr - chromosome;
- startpos - the first genomic position of a copy number segment;
- endpos - the last genomic position of a copy number segment;
- CN_Estimate - the copy number estimated for each segment.

quantityColumnLabel

The name of the new column. Valid options are: FPKM, CN_Estimate.

Value

dm

The input matrix with three additional columns:

- quantityID - the ID of the assigned quantity;
- quantityColumnLabel - the quantity;
- segmentLength - the length of the segment from which the quantity has been assigned.

Author(s)

Noemi Andor
assignQuantityToSP

Examples

```r
data(cbs)
data(snv)
dm=assignQuantityToMutation(snv,cbs,quantityColumnLabel="CN_Estimate")
```

assignQuantityToSP
Quantity assignment (ploidy) to subpopulations

Description

Assigns quantities to predicted subpopulations. Currently, the only assignable quantity are subpopulation specific ploidies for the input genome segments.

Usage

```r
assignQuantityToSP(cbs, dm, C=list(sps=c("SP","SP_cnv"), pms = c("PM","PM_cnv")), ambig=F)
```

Arguments

- **cbs**
 Matrix in which each row corresponds to a copy number fragment as computed by a circular binary segmentation algorithm. Has to contain at least the following column names:
 - `chr` - chromosome;
 - `startpos` - the first genomic position of a copy number segment;
 - `endpos` - the last genomic position of a copy number segment;
 - `CN_Estimate` - the copy number estimated for each segment (weighted average value across all subpopulations in the sample).

- **dm**
 Matrix in which each row corresponds to a mutation. Has to contain at least the following column names:
 - `chr` - the chromosome on which each point mutation is located;
 - `startpos` - the genomic position of each mutation;
 - `SP` - the subpopulation to which the point mutation has been assigned;
 - `SP_cnv` - the subpopulation with a copy number variation within the same genomic segment in which SP has a point mutation;
 - `PM` - ploidy of the subpopulation with the point mutation (SP);
 - `PM_cnv` - ploidy of the subpopulation with the copy number variation (SP_cnv).

- **C**
 List referencing column names in the mutation matrix, with two fields:
 - `sps` - the column names holding subpopulation sizes (typically "$SP", "$SP_cnv");
 - `pms` - the column names holding the ploidies assigned for each subpopulation (typically "$PM", "$PM_cnv").

- **ambig**
 Whether or not to assign ploidy to a subpopulation, SP_i, for a segment containing multiple SP_i specific ploidies, at least two of which have distinct magnitudes. If set to TRUE, the median ploidy is assigned as segment ploidy. Setting
this parameter to TRUE is not recommended as the output will include segment-assignments where subpopulation specific ploidy is ambiguous. Repeating circular binary segmentation with less stringent parameters typically reduces segment length and thus the prevalence of ambiguous assignments.

Value

The input copy number matrix with one additional column for each predicted subpopulation:

SP_xx - where xx is the size of the corresponding subpopulation. Column entries contain the ploidy of each segment in SP: Value <NA> indicates that no ploidy could be inferred for the segment in this subpopulation (either because the subpopulation had no point mutations/CNVs within the segment, or because it had multiple, ambiguous ploidy assignments within the segment).

Author(s)

Noemi Andor

buildMultiSamplePhylo Relations between inter- and intra-sample subpopulations

Description

Predicts phylogenetic relations between subpopulations from subpopulation specific copy number and point mutation profiles, while including information about sample origin of each subpopulation. This function differs from buildPhylo in that it integrates the subpopulations predicted in multiple, geographically distinct tumor-samples into one common phylogeny and in that it includes point mutations in addition to copy number variations to infer inter-sample phylogenetic relations.

Usage

buildMultiSamplePhylo(samGr,out,treeAlgorithm="bionjs",ambig=F,plotF=1,spRes=1)

Arguments

samGr

List with three fields:

- **cbs** - Input of runExPANDS: matrix in which each row corresponds to a copy number segment. CBS is typically the output of a circular binary segmentation algorithm. Columns in CBS must be labeled and must include chr, startpos, endpos and CN_Estimate (see cbs). **Do not use the output of runExPANDS here.**
- **sps** - Output of runExPANDS. Matrix in which each row corresponds to a somatic mutation. Columns must include: chr - the chromosome on which each mutation is located; startpos - the genomic position of each mutation; SP - the subpopulation to which the mutation has been assigned; PM - the total ploidy of all alleles at the mutated genomic locus, in the assigned subpopulation; PM_B - the ploidy of the B-allele at the mutated genomic locus, in the assigned subpopulation; CN_Estimate - the average ploidy (among all cells) of the locus in which the mutation is embedded (see also assignQuantityToMutation).
- **labels** - Label denoting sample origin of each subpopulation matrix. Entry is
mandatory for each geographical sample.

out
Prefix of file to which multi-sample phylogeny will be saved.

treeAlgorithm
Neighbor joining algorithm used for phylogeny reconstruction (from library ape). Options: bionjs (default), njs.

ambig
Input parameter "ambig" for called function: assignQuantityToSP.

plotF
Option for displaying the phylogenetic tree (0 - no display; 1 - display).

spRes
Option on whether or not to ignore the subpopulations calculated for each sample and instead treat every geographical tumor-sample as one single tumor-metapopulation (Default value: 1 - subpopulation resolution; 0 - metapopulation resolution).

Details
Reconstructs phylogenetic relationships between subpopulations using neighbor-joining algorithms provided by R-package 'ape'. Pairwise distances between subpopulations \(i \) and \(j \) are calculated as:

\[
d_{ij} := \frac{(cnv_i=j + snv_i=j)}{(cnv_{ij} + snv_{ij})},
\]

where \(cnv_i=j \) is the number of copy number segments for which subpopulations \(i \) and \(j \) have the same copy number; \(snv_i=j \) is the number of point mutations for which subpopulations \(i \) and \(j \) have the same mutation status and \(cnv_{ij}, snv_{ij} \) are the total number of copy number segments and mutations respectively, for which both subpopulations have available information. Subpopulations with insufficient ploidy and point mutations information are excluded from phylogeny.

Value
An object of class "phylo" (library ape).

Author(s)
Noemi Andor

See Also
buildPhylo

Description
Predicts phylogenetic relations between subpopulations from subpopulation specific copy number profiles.

Usage

buildPhylo(ploidy, outF, treeAlgorithm="bionjs", dm=NA, add="Germline")
Arguments

ploidy Ploidy-matrix in which each row corresponds to a copy number segment. Has to contain at least one column for each predicted subpopulation. Subpopulation column names must be labeled SP_xx, where xx is the size of the corresponding subpopulation. Ploidy-matrix can be obtained by calling assignQuantityToSP.

outF Prefix of file to which phylogeny will be saved.

treeAlgorithm Neighbor joining algorithm used for phylogeny reconstruction (from library ape). Options: bionjs (default), njs.

dm Optional matrix in which each row corresponds to a mutation. Only mutations located on autosomes should be included. Columns in dm must be labeled and must include:

- SP - the subpopulation to which the point mutation has been assigned.
- SP_cnv - the subpopulation to which the CNV (overlapping with the point mutation) has been assigned (if an CNV is present).
- chr - the chromosome on which each point mutation is located;
- startpos - the genomic position of each point mutation;
- PM - the total ploidy of all alleles at the mutated genomic locus, in the assigned subpopulation.
- PM_B - the ploidy of the B-allele at the mutated genomic locus, in the assigned subpopulation.

If dm is available, an attempt will be made to assign every mutation to >1 subpopulation according to the inferred phylogenetic relations between subpopulations.

add Artificial subpopulation to be included in phylogeny (options: 'Germline', 'Consensus', NULL).

Details

Reconstructs phylogenetic relationships between subpopulations using neighbor-joining algorithms provided by R-package 'ape'. Pairwise distances between subpopulations are calculated as the number of copy number segments for which both subpopulations have the same copy number, divided by the total number of copy number segments for which both subpopulations have available copy number information. Subpopulations with insufficient ploidy information are excluded from phylogeny.

Value

List with two fields:

- tree An object of class "phylo" (library ape).
- dm The input matrix with each row representing a point mutation and additional columns:
 SP_xx - where xx is the size of the corresponding subpopulation. Column entries contain a binary indicator of whether or not the point mutation in this row is present in SP_xx.
cbs

Author(s)
Noemi Andor

See Also
assignQuantityToSP

cbs

Matrix of copy number fragments

Description
Copy number segments as obtained by circular binary segmentation. Data is derived from a Glioblastoma tumor (TCGA-06-0152-01).

Usage
data(cbs)

Format
Numeric matrix with 120 rows (one per copy-number segment) and 4 columns:
- **chr** - the chromosome
- **startpos** - genomic position at which copy-number segment starts.
- **endpos** - genomic position at which copy-number segment ends.
- **CN_Estimate** - average copy-number of the segment among all cells.

Source
Data derived from The Cancer Genome Atlas (TCGA).

cellfrequency_pdf

Computes the probability distribution of cellular frequencies for a single mutation.

Description
Calculates P - the probability density distribution of cellular frequencies for one single point mutation or CNV. For each cell-frequency f, the value of $P(f)$ reflects the probability that the mutation is present in a fraction f of cells.

Usage
cellfrequency_pdf(af, cnv, pnb, freq, max_PM=6)
Arguments

- **af**: The allelic frequency at which the point mutation has been observed.
- **cnv**: The average copy number of the locus in which the mutation is embedded.
- **pnb**: The ploidy of the B-allele in normal cells (binary variable: 1 if the mutation is a germline variant, 0 if somatic). B-alleles with normal cell ploidy > 1 are not modeled.
- **freq**: Vector of cellular frequencies at which the probabilities will be calculated.
- **max_PM**: Upper threshold for the number of amplicons per mutated cell. \(max_{PM} \) is the maximum number of amplicons above which solutions are rejected in the cell-frequency estimation step described below, i.e. \(PM \leq max_{PM} \). The choice of \(max_{PM} \) should depend on genomic depth of coverage and on the fraction of the genome sequenced: the higher the quality and abundance of data, the higher \(max_{PM} \).

Details

We consider two types of molecular mechanisms that convert a locus into its mutated state: copy number variation (CNV) inducing events and single nucleotide variation (SNV) inducing events. We assume that a normal state is defined by a total ploidy of two and B allele ploidy below two, whereas a mutated state has an increased fraction of B alleles. The conditions defining these states for each locus \(l \) are as follows:

1. \(PM_B, PN_B, PM, PN \in \mathbb{N} \);
2. \(PM_B \geq 1 \); \(PN_B \leq 1 \); \(PN = 2 \);
3. \(\frac{PM_B}{PM} \geq \frac{PN_B}{PN} \).

\(PM_B \) and \(PN_B \) denote the ploidy of the B allele in each cell type: mutated cells and normal cells, respectively. The value of \(PN_B \) is one if \(l \) has a germline variant, zero otherwise. \(PM, PN \) are the total ploidy of mutated cells and normal cells. \(PM \) is required to be between one and \(max_{PM} \), that is, we exclude solutions for which the maximum number of amplicons per cell exceeds the user defined value of \(max_{PM} \).

The function returns the probability distribution, \(P(f) \), that the mutation at locus \(l \) is present in a fraction \(f \) of cells, where \(f \in [0, 1] \).

Four alternative cell frequency probability distribution scenarios, \(P(f) \), can be obtained for each allele-frequency + copy number pair (AF, CN). For each scenario, model starts with a germline population that will be the root of all other modeled subpopulations. First subpopulation (\(f_{cnv} \)) modeled to evolve from the germline population is always the one carrying a CNV:

\[
\text{pm} \ast f_{cnv} + PN \ast (1 - f_{cnv}) = CN, \text{ where } \text{pm} \text{ is the overall ploidy of } f_{cnv}.
\]

A subsequent subpopulation (\(f_{snv} \)) is always defined by an SNV and is modeled in relation to \(f_{cnv} \), either as:

1. \(P_s(f) \) - its sibling: \(PM_B \ast f_{snv} + PN_B \ast (1 - f_{snv}) = AF \ast CN, \) where \(f_{snv} + f_{cnv} \leq 1; PM_B \leq 2 \).
2. \(P_p(f) \) - its parent: \(PM_B \ast f_{snv} + PN_B \ast (1 - f_{snv}) = AF \ast CN, \) where \(f_{snv} > f_{cnv}; PM_B \leq 2 \).
3. \(P_c(f) \) - its child: \(PM_B \ast (f_{snv} - f_{cnv}) + pm_B \ast f_{cnv} + PN_B \ast (1 - f_{snv}) = AF \ast CN, \) where \(f_{snv} < f_{cnv}; PM_B \leq pm \) and \(pm_B \) is the B-allele ploidy of \(f_{cnv} \).
4. \(P_i(f) \) - itself: \(PM_B \ast f + PN_B \ast (1 - f) = AF \ast CN, \) where \(f = f_{snv} + f_{cnv} = f_{cnv}; PM_B \leq pm \).
Under 1), SNV and CNV are completely independent as they are never co-propagated during the same clonal expansion. Under 2) and 3), SNV and CNV are partially dependent, yet present in two distinct subpopulations. Under 4), both the SNV and an CNV at \(l \) were propagated during the same clonal expansion.

Value

List with four components:

- \(p \): The probability that the point mutation/CNV is present in a fraction \(f \) of cells, for each input frequency \(f \) in parameter \(\text{freq} \).
- \(\text{bestF} \): The cellular frequency that best explains the observed allele frequency and/or copy number.

Author(s)

Noemi Andor

References

Examples

```r
freq=seq(0.1,1.0,by=0.01);
cfd=cellfrequency_pdf(af=0.26,cnv=1.95,pnb=0.freq=freq, max_PM=6)
plot(freq,cfd$p,type="l",xlab="f",ylab="P(f)")
```

Description

Calculates overrepresented cell frequencies using a two-step approach. Based on the assumption that passenger mutations occur within a cell prior to the driver event that initiates the expansion, each clonal expansion should be marked by multiple mutations. Thus mutations and copy number variations that took place in a cell prior to a clonal expansion should be present in a similar fraction of cells and leave a similar "frequency-trace" during their propagation.

Usage

```r
clusterCellFrequencies(densities, precision, nrep=30, min_CellFreq=0.1)
```
computeCellFrequencyDistributions

Arguments

densities Matrix as obtained by computeCellFrequencyDistributions. Each row corresponds to a mutation and each column corresponds to a cellular frequency. Each value \(\text{densities}[i,j] \) represents the probability that mutation \(i \) is present in a fraction \(f \) of cells, where \(f \) is given by: \(\text{colnames}(\text{densities}[i,j]) \).

precision Precision with which subpopulation size is predicted, a small value reflects a high resolution and can lead to a higher number of predicted subpopulations.

nrep Positive integer indicating the number of algorithm repetitions (default: 30).

min_CellFreq Lower threshold for the prevalence of a mutated cell (default: 0.1).

Details

In the first step, mutations with similar cellular frequencies are grouped together by hierarchical cluster analysis of the probability distributions using the Kullback-Leibler divergence as a distance measure. The cell frequency at each cluster-maxima denotes the size of the subpopulation that harbors the clustered mutations. In the second step, each cluster is extended by members with similar distributions in an interval around the cluster-maxima.

Value

SPs Matrix of predicted subpopulations. Each row corresponds to a subpopulation and each column contains information about that subpopulation, such as the size in the sequenced tumor bulk (column Mean Weighted) and the noise score at which the subpopulation has been detected (column score: lower values ~ higher subpopulation detection confidence).

Author(s)

Noemi Andor

References

computeCellFrequencyDistributions

Gathering of cell frequency probability distributions

Description

Computes the probability distributions of cell frequencies, by calling cellfrequency_pdf for each mutation separately.

Usage

computeCellFrequencyDistributions(dm, max_PM=6, precision, min_CellFreq=0.1, norm=TRUE)
Arguments

- **dm**: Matrix in which each row corresponds to a mutation. Has to contain at least the following column names:
 - **chr**: the chromosome on which each mutation is located;
 - **startpos**: the position of each mutation;
 - **AF_Tumor**: the allele-frequency of each mutation;
 - **PN_B**: the ploidy of the B-allele in normal cells (binary variable: 1 if the mutation is a germline variant, 0 if somatic).

- **max_PM**: Upper threshold for the number of amplicons per mutated cell (default: 6). See also `cellfrequency_pdf`.

- **precision**: Precision with which subpopulation size is predicted, a small value reflects a high resolution and can lead to a higher number of predicted subpopulations.

- **min_CellFreq**: Lower boundary for the prevalence of a mutated cell (default: 0.1).

- **norm**: TRUE if cell frequency probability distributions should be scaled to 1, FALSE otherwise.

Value

List with three fields:

- **freq**: The cellular frequencies for which probabilities are computed.

- **densities**: Matrix in which each row corresponds to a point mutation and each column corresponds to a cellular frequency. Each value `densities[i, j]` represents the probability that mutation `i` is present in a fraction `freq[j]` of cells.

- **dm**: The input matrix with column `f` updated according to the cellular frequency that best explains the observed allele frequency and copy number.

Author(s)

Noemi Andor

plotSPs

Subpopulation Visualization

Description

Plots coexistent subpopulations determined by ExPANdS.

Usage

```r
plotSPs(dm, sampleID=NA, cex=0.5, legend="CN_Estimate", orderBy="chr", rawAF=F)
```
plotSPs

Arguments

- **dm**: Matrix in which each row corresponds to a point mutation (for example, the matrix output of assignMutations). Has to contain at least the following column-names:
 - **chr**: the chromosome on which each mutation is located;
 - **startpos**: the genomic position of each mutation;
 - **AF_Tumor**: the allele-frequency of each mutation;
 - **CN_Estimate**: the absolute copy number estimated for each segment;
 - **PN_B**: the ploidy of the B-allele in normal cells (binary variable: 1 if the mutation is a germline variant, 0 if somatic);
 - **SP**: the subpopulation to which each point mutation has been assigned (as fraction of cells in the tumor bulk);
 - **%maxP**: the confidence with which the mutation has been assigned to the corresponding subpopulation;
 - **SP_cnv**: the subpopulation to which the CNV has been assigned;
 - **PM**: the total ploidy of all alleles at the mutated genomic locus, in subpopulation SP.
 - **PM_cnv**: the total ploidy of all alleles at the mutated genomic locus in subpopulation SP_cnv.
 - **PM_B**: the ploidy of the mutated allele in subpopulation SP.
 - **PM_B_cnv**: the ploidy of the mutated allele in subpopulation SP_cnv.

- **sampleID**: The name of the sample in which the mutations have been detected.
- **cex**: The amount by which plotting text and symbols should be magnified relative to the default. See also help(par).
- **legend**: Allele frequencies and ploidies are colored based on the chromosome on which the mutation is located (option: 'chr') or based on the average copy number in the sample (option: 'CN_Estimate').
- **orderBy**: Loci within a subpopulation are sorted by genomic location (option 'chr') or by the confidence with which they have been assigned to the subpopulation (option '%maxP').
- **rawAF**: Specifies whether the allele frequency of SNVs should be adjusted relative to the assigned subpopulation (options: true, false).

Value

For each point mutation (x-axis) the function displays:
- the size of the subpopulation to which the mutation has been assigned (squares). Each square is colored based on the confidence with which the mutation has been assigned to the corresponding subpopulation (black - highest, white - lowest).
- the total ploidy of all alleles at the mutated genomic locus in that subpopulation (dots).
- only for loci with an CNV and an SNV each in distinct subpopulations: the total ploidy of all alleles at the mutated genomic locus in the subpopulation which harbors the CNV (crosses).
- the allele frequency of the mutation (stars - somatic mutations, triangles - loss of heterozygosity).

Author(s)

Noemi Andor
roi

Regions of interest

Description

For internal use only. Default regional boundary for mutations included during clustering, comprising ca. 468 MB centered on the human exome. Relevant if number of input mutations exceeds user defined threshold (often applies to whole genome sequencing data). A saved image of this object is in sysdata.rda.

Format

Numeric matrix in which each row corresponds to a genomic segment.

Columns:

- **chr** - the chromosome of the segment;
- **start** - the first genomic position of the segment;
- **end** - the last genomic position of the segment.

Source

Data derived from human SureSelectExome_hg19 50MB library kit annotation.

See Also

runExPANdS

runExPANdS

Main Function

Description

Given a set of mutations, ExPANdS predicts the number of clonal expansions in a tumor, the size of the resulting subpopulations in the tumor bulk and which mutations accumulate in a cell prior to its clonal expansion. Input-parameters SNV and CBS hold the paths to tab-delimited files containing the point mutations and the copy numbers respectively. Alternatively SNV and CBS can be read into the workspace and passed to runExPANdS as numeric matrices. The robustness of the subpopulation predictions by ExPANdS increases with the number of mutations provided. It is recommended that SNV contains at least 200 point mutations to obtain stable results.

Usage

```r
runeXpANS(SNV, CBS, maxScore=2, max_PM=6, min_CellFreq=0.1, precision=NA, plotF=2, snvF=NULL, maxN=8000, region=NA)
```
Arguments

SNV
Matrix in which each row corresponds to a point mutation. Only mutations located on autosomes should be included. Columns in SNV must be labeled and must include:
- **chr** - the chromosome on which each mutation is located;
- **startpos** - the genomic position of each mutation;
- **AF_Tumor** - the allele-frequency of each mutation;
- **PN_B** - ploidy of B-allele in normal cells. A value of 0 indicates that the mutation has only been detected in the tumor sample (i.e. somatic mutation). A value of 1 indicates that the mutation is also present in the normal (control) sample, albeit at reduced allele frequency (i.e. mutation is consequence of LOH). Mutations, for which the allele frequency in the tumor sample is lower than the corresponding allele frequency in the normal sample, should not be included.

CBS
Matrix in which each row corresponds to a copy number segment. CBS is typically the output of a circular binary segmentation algorithm. Columns in CBS must be labeled and must include:
- **chr** - chromosome;
- **startpos** - the first genomic position of a copy number segment;
- **endpos** - the last genomic position of a copy number segment;
- **CN_Estimate** - the absolute copy number estimated for each segment.

maxScore
Upper threshold for the noise score of subpopulation detection. Only subpopulations identified at a score below `maxScore` are kept.

max_PM
Upper threshold for the number of amplicons per mutated cell. Increasing the value of this variable is not recommended unless extensive depth and breadth of coverage underly the measurements of copy numbers and allele frequencies. See also `cellfrequency_pdf`.

min_CellFreq
Lower boundary for the cellular prevalence interval of a mutated cell. Mutations for which allele frequency * copy number are below `minCellFreq`, are excluded from further computation. Decreasing the value of this variable is not recommended unless extensive depth and breadth of coverage underly the measurements of copy numbers and allele frequencies.

precision
Precision with which subpopulation size is predicted, a small value reflects a high resolution and can lead to a higher number of predicted subpopulations.

plotF
Option for displaying a visual representation of the identified subpopulations (0 - no display; 1 - display subpopulation size; 2 - display subpopulation size and phylogeny).

snvF
Prefix of file to which predicted subpopulation composition will be saved. Default: the name of the file from which mutations have been read or "out.expands" if input mutations are not handed over as file path.

maxN
Upper limit for number of point mutations used during clustering. If number of user supplied point mutations exceeds `maxN`, the clustering of cellular frequency distributions will be restricted to point mutations found within `region`.

region
Regional boundary for mutations included during clustering. Matrix in which each row corresponds to a genomic segment. Columns must include:
- **chr** - the chromosome of the segment;
start - the first genomic position of the segment;
end - the last genomic position of the segment.
Default: SureSelectExome_hg19, comprising ca. 468 MB centered on the human exome. Alternative user supplied regions should also be coding regions, as the selective pressure is higher as compared to non-coding regions.

Value

List with fields:

- **finalSPs**
 - Matrix of predicted subpopulations. Each row corresponds to a subpopulation and each column contains information about that subpopulation, such as the size in the sequenced tumor bulk (column **Mean Weighted**) and the noise score at which the subpopulation has been detected (column **score**).

- **dm**
 - Matrix containing the input mutations with at least seven additional columns:
 - **SP** - the subpopulation to which the point mutation has been assigned;
 - **SP_cnv** - the subpopulation to which the CNV has been assigned (if an CNV exists at this locus);
 - **%maxP** - the confidence of mutation assignment.
 - **f** - Deprecated. The maximum likelyhood cellular prevalence of this point mutation, before it has been assigned to SP. This value is based on the copy number and allele frequency of the mutation exclusively and is independent of other point mutations. Column SP is less sensitive to noise and considered the more accurate estimation of cellular mutation prevalence.
 - **PM** - the total ploidy of all alleles in the subpopulation harboring the point mutation (SP).
 - **PM_B** - the ploidy of the B-allele in the subpopulation harboring the point mutation (SP).
 - **PM_cnv** - the total ploidy of all alleles in the subpopulation harboring an CNV (SP_cnv).
 - **PM_B_cnv** - the ploidy of the B-allele, in the CNV harboring subpopulation (SP_cnv).
 - If phylogeny reconstruction was successful, matrix includes one additional column for each subpopulation from the phylogeny, indicating whether or not the point mutation is present in the corresponding subpopulation.

- **densities**
 - Matrix as obtained by `computeCellFrequencyDistributions`. Each row corresponds to a mutation and each column corresponds to a cellular frequency. Each value `densities[i, j]` represents the probability that mutation `i` is present in a fraction `f` of cells, where `f` is given by: `colnames(densities[, j])`.

- **ploidy**
 - Matrix as obtained by `assignQuantityToSP`. Each row corresponds to a copy number segment, e.g. as obtained from a circular binary segmentation algorithm. Includes one additional column for each predicted subpopulation, containing the ploidy of each segment in the corresponding subpopulation.

- **tree**
 - An object of class "phylo" (library ape) as obtained by `buildPhylo`. Contains the inferred phylogenetic relationships between subpopulations.
Author(s)
Noemi Andor

References

Examples
data(snv);
data(cbs);
maxScore=2.5;
set.seed(4); idx=sample(1:nrow(snv), 60, replace=FALSE);
#out= runExPANDS(snv[idx,], cbs, maxScore);

simulation Simulated heterogeneous samples

Description
A total of 50 samples with various numbers of subpopulations per sample were simulated at variable noise rates and constant number of 200 mutations per sample.

Usage
data(simulation)

Format
List with 50 entries - one per simulated sample. Subpopulation composition can be predicted for each sample and the predictions compared to the the simulated entries:

- **snv** - the matrix of simulated point mutations (including ground truth columns SP*, PM*).
- **cbs** - the matrix of simulated copy number segments (including ground truth columns SP*).
- **spstats** - matrix of subpopulation statistics (ground truth).

Examples
data(simulation)
svncols=c("chr", "startpos", "CN_Estimate", "AF_Tumor", "PN_B")
cbscols=c("chr", "startpos", "endpos")
sI=1:50; #set to 1:200 to run on entire simulation
#out=runExPANDS(simulation[[1]]$snv[si,svncols],simulation[[1]]$cbs[,cbscols],plotF = 0);
#truePhy=buildPhylo(simulation[[1]]$cbs, outFile='truePhylo'); #simulated
#predPhy=buildPhylo(out$ploidy, outFile='truePhylo'); #predicted
#par(mfrow=c(1,2))
#plot(truePhy$tree,cex=2,main='simulated')
#plot(predPhy$tree,cex=2,main='predicted')
Single Nucleotide Variations

Description

Somatic mutations and Loss of Heterozygosity (LOH) of a Glioblastoma tumor (TCGA-06-0152-01).

Usage

data(snv)

Format

Numeric matrix with 773 rows (one per mutation) and 7 columns:
- **chr**: the chromosome
- **startpos**: genomic position
- **endpos**: same as above
- **REF**: ASCII code of the reference nucleotide (in hg18/hg19)
- **ALT**: ASCII code of the B-allele nucleotide
- **AF_Tumor**: allele frequency of B-allele
- **PN_B**: ploidy of B-allele in normal cells. A value of 0 indicates that the mutation has only been detected in the tumor sample (i.e. somatic mutations). A value of 1 indicates that the mutation is also present in the normal (control) sample, albeit at reduced allele frequency (i.e. mutation is consequence of LOH). Other mutations should not be included.

Source

Data derived from The Cancer Genome Atlas (TCGA).
Index

*Topic **datasets**
 - cbs, 9
 - roi, 15
 - simulation, 18
 - snv, 19

assignMutations, 2, 14
assignQuantityToMutation, 4, 6
assignQuantityToSP, 5, 7–9, 17

buildMultiSamplePhylo, 6
buildPhylo, 3, 6, 7, 7, 17

 - cbs, 6, 9
 - cellfrequency_pdf, 2, 3, 9, 12, 13, 16
 - clusterCellFrequencies, 2, 4, 11
 - computeCellFrequencyDistributions, 12, 12, 17

plotSPs, 13

roi, 15
runExPANdS, 6, 15, 15

simulation, 18
snv, 19