The {fHMM}
package allows for multiple hidden Markov
model specifications, including different data transformations,
state-dependent distributions, and a hierarchical model structure. This
vignette1
outlines what and how specifications are possible.
We first load the package via the familiar library()
call:
set_controls
functionThe {fHMM}
philosophy is to start the modeling process
by setting all data, model, and estimation specifications. This is done
by defining a named list
of controls and passing it to the
set_controls()
function. The function checks the
specifications and returns an fHMM_controls
object which
stores all specifications and thereby provides required information for
other {fHMM}
functionalities.
For demonstration, we list example specifications using data from the Deutscher Aktienindex DAX2 (Janßen and Rudolph 1992):
dax <- download_data(symbol = "^GDAXI")
head(dax)
#> Date Open High Low Close Adj.Close Volume
#> 1 1987-12-30 1005.19 1005.19 1005.19 1005.19 1005.19 0
#> 2 1987-12-31 NA NA NA NA NA NA
#> 3 1988-01-01 NA NA NA NA NA NA
#> 4 1988-01-04 956.49 956.49 956.49 956.49 956.49 0
#> 5 1988-01-05 996.10 996.10 996.10 996.10 996.10 0
#> 6 1988-01-06 1006.01 1006.01 1006.01 1006.01 1006.01 0
The following lines of code specify a 3-state HMM with
state-dependent t-distributions on the data in the file dax.csv. The
dates are provided in the column called Date and the data in the column
called Close. The logreturns = TRUE
line transforms the
index data to log-returns. The runs = 50
line sets the
number of numerical optimization runs to 50.
controls <- list(
states = 3,
sdds = "t",
data = list(file = dax,
date_column = "Date",
data_column = "Close",
logreturns = TRUE),
fit = list(runs = 50)
)
set_controls(controls)
#> fHMM controls:
#> * hierarchy: FALSE
#> * data type: empirical
#> * number of states: 3
#> * sdds: t()
#> * number of runs: 50
The following specifies a 2-state HMM with state-dependent Gamma
distributions, where the expectation values for state 1 and 2 are fixed
to 0.5 and 2, respectively. The model will be fitted to 500 data points
(horizon = 500
), that are going to be simulated from this
model specification.
Specifying hierarchical HMMs is analogously, except that new
parameters can be specified (for example period
, see below)
and some parameters now can be specified for both hierarchies.
controls <- list(
hierarchy = TRUE,
horizon = c(100, 10),
sdds = c("t(df = 1)", "t(df = Inf)"),
period = "m"
)
set_controls(controls)
#> fHMM controls:
#> * hierarchy: TRUE
#> * data type: simulated
#> * number of states: 2 2
#> * sdds: t(df = 1) t(df = Inf)
#> * number of runs: 10
The help page of the set_controls()
function provides an
overview of all possible specifications, it can be accessed via
help("set_controls", package = "fHMM")
.
This vignette was build using R 4.4.1 with the
{fHMM}
1.4.0 package.↩︎
The download_data()
function is explained
in the
vignette on data management.↩︎