
gdpc: An R Package for Generalized Dynamic

Principal Components

Daniel Peña

UC3M-BS Institute of Financial Big Data and
Universidad Carlos III de Madrid

Ezequiel Smucler

Universidad Torcuato Di Tella

Victor J. Yohai

Universidad de Buenos Aires – CONICET

Abstract

gdpc is an R package for the computation of the generalized dynamic principal compo-
nents proposed in Peña and Yohai (2016). In this paper, we briefly introduce the problem
of dynamical principal components, propose a solution based on a reconstruction criteria
and present an automatic procedure to compute the optimal reconstruction. This solution
can be applied to the non-stationary case, where the components need not be a linear
combination of the observations, as is the case in the proposal of Brillinger (1981). This
article discusses some new features that are included in the package and that were not
considered in Peña and Yohai (2016). The most important one is an automatic procedure
for the identification of both the number of lags to be used in the generalized dynamic
principal components as well as the number of components required for a given recon-
struction accuracy. These tools make it easy to use the proposed procedure in large data
sets. The procedure can also be used when the number of series is larger than the number
of observations. We describe an iterative algorithm and present an example of the use of
the package with real data.

This vignette is based on Peña, Smucler, and Yohai (2020).

Keywords: dimensionality reduction, high-dimensional time series, R.

1. Introduction

Dimension reduction is important for the analysis of multivariate time series, particularly
for the high-dimensional data sets that are becoming increasingly common in applications,
because the number of parameters in the usual multivariate time series models grows quadrat-
ically with the number of variables. The first proposal of a dynamic factor model for time
series is due to Brillinger (1964, 1981) who proposed to apply standard techniques of factor
analysis to the spectral matrix. He also proposed dynamic principal components, which are
two sided linear combinations of the data which provide an optimal reconstruction. They
are obtained by the inverse Fourier transform of the principal components of the spectral
density matrices for each frequency. Geweke (1977) proposed a one sided generalization of
the static factor model where the factors and the innovations are mutually independent and
follow covariance stationary linear processes, and applied standard estimation methods for

2 gdpc: Generalized Dynamic Principal Components

factor analysis to the spectral density matrix instead of the covariance matrix. A similar
model was used by Sargent and Sims (1977), who named their model the index model. In
this model the factors account for all the cross-correlations among the series, whereas the
factors and the innovations account for the autocorrelation of the observed series. Peña and
Box (1987) propose a dynamic factor model for a vector of stationary time series with white
noise innovations and proved that we can estimate the loading matrix by the eigenvectors
corresponding to non null eigenvalues of the lag covariance matrices of the data. Stock and
Watson (2002) use dynamic factors for forecasting, by assuming that the variable to forecast
and the explanatory variables useful for its forecasting follow a dynamic factor model. Bai
and Ng (2002) develop a criterion to consistently estimate the number of factors, which will
be used in our package. Hu and Chou (2004) proposed a test for the number of factors and
explore the generalization of the model for integrated factors that was carried out by Peña and
Poncela (2006). Pan and Yao (2008) include general nonstationary processes for the factors.
Lam and Yao (2012) proposed a test for the number of factors based on the eigenvalues of
the lag covariance matrices.

Forni, Hallin, Lippi, and Reichlin (2000) generalized Geweke’s dynamic factor model by allow-
ing the idiosyncratic components to be autocorrelated and contain weak cross-correlations.
The authors proposed to estimate the common components by the projection of the data on
the dynamic principal components proposed by Brillinger. Forni, Hallin, Lippi, and Reichlin
(2005) proposed a one sided method of estimation of a dynamic factor model and used the
method for forecasting. The forecasts generated with this procedure have been compared to
the ones derived by Stock and Watson (2002) and the results are mixed (see Forni, Hallin,
Lippi, and Zaffaroni (2017)). A modified forecasting approach was proposed by Forni, Hallin,
Lippi, and Zaffaroni (2015), although again the finite sample results are mixed. Hallin and
Lippi (2013) give a general presentation of the methodological foundations of dynamic factor
models.

Peña and Yohai (2016) proposed a new approach for defining dynamic principal components
that is different from the one taken by Brillinger in three ways. First, their generalized dy-
namic principal components (GDPC, from now on) are built without the assumption that the
series are stationary. If the data is not stationary, the GDPC minimize a meaningful recon-
struction criterion, unlike Brillinger’s approach, which minimizes the expected reconstruction
mean square error. Second, the GDPC need not be a linear combination of the original series.
Third, they are computed directly in the time domain, instead of working in the frequency
domain. These GDPC are optimal reconstructors of the observed data but they can also be
used to estimate the common part in high-dimensional dynamic factor models. In fact, it
has been shown that the GDPC provide consistent estimates (Smucler 2019) of the common
part of dynamic factor models. Since the GDPC are based on both leads and lags of the
data, like the dynamic principal components defined by Brillinger, they are not useful for
forecasting. However, they are useful in general as a way to summarize the information in
sets of dependent time series in which the factor structure may not apply. Finally, the opti-
mal reconstructor property of the GDPC is useful for data compression to reduce resources
required to store and transmit data. This makes them potentially useful for compression of
dependent data and they could be applied for image analysis and other types of spatial data
in which dependence is important.

A large number of R packages are available for working with time series. Besides the ‘mts’
class provided by the stats package, R Core Team (2016), several R packages provide classes

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 3

and methods for handling time-indexed data. For example, the zoo package, Zeileis and
Grothendieck (2005), provides an S3 class and methods for handling totally ordered indexed
observations, in particular irregular time series. The xts package, Ryan and Ulrich (2018), is
able to uniformly handle R’s different time-based data classes. Our gdpc package supports
mts, xts and ‘zoo’ objects: if the original data is stored in an object of class ‘mts’, xts

or zoo, then the principal components and reconstructed time series will also be stored in
an object of class ‘mts’, ‘xts’ or ‘zoo’ respectively, with the same date attributes. Among
the multivariate time series R packages, the MTS package, Tsay and Wood (2018), is a gen-
eral tool-kit for multivariate time series that includes vector autoregressive moving average
(VARMA) models, factor models, and multivariate volatility models. freqdom, Hormann and
Kidzinski (2017), implements Brillinger’s dynamic principal components. pcdpca, Kidzin-
ski, Jouzdani, and Kokoszka (2017), extends Brillinger’s dynamic principal components to
periodically correlated multivariate time series. An extensive comparison of Brillinger’s ap-
proach to dynamic principal components and GDPC can be found in Peña and Yohai (2016).
The BigVAR package, Nicholson, Matteson, and Bien (2019), estimates vector autoregres-
sive (VAR) models with structured LASSO penalties. Many more packages can be found
at https://CRAN.R-project.org/view=TimeSeries. To the best of our knowledge, gdpc

(Peña, Smucler, and Yohai 2018) is the only publicly available implementation of GDPC.

This article is organized as follows. In Section 2 we briefly review the definition of the
GDPC and presents a new proposal to apply the procedure in an automatic way. Several
possible methods for choosing the number of components and the number of lags used for each
component are discussed. In Section 3 we review the iterative algorithm used to compute the
GDPC. In Section 4 we illustrate the use of the gdpc package using artificial and real data
sets. We compare the performance regarding computation time and the reconstruction of
non-stationary time series of the implementation of Brillinger’s method found in the freqdom

package to that of GDPC in Section 5. In Section 6 we compare the performance of the
different criteria available in the gdpc package to choose the number of lags that define the
GDPC. Section 7 includes a small simulation study to estimate the typical computation times
of the main algorithm for both stationary and non-stationary time series. Finally, conclusions
are provided in Section 8.

2. Definition of generalized dynamic principal components

Consider a time series vector zt = (z1,t, . . . , zm,t), where 1 ≤ t ≤ T, and let Z be the T × m
matrix whose rows are z1, . . . , zT . Here T stands for the number of periods and m for the
number of series. We define the first dynamic principal component with k lags as a vector
f =(ft)−k+1≤t≤T , so that the reconstruction of series zj,t, 1 ≤ j ≤ m, as a linear combination
of (ft−k, . . . , ft−1, ft) is optimal with respect to the mean squared error (MSE) criterion. More
precisely, given a possible factor f of length (T + k), an m × (k + 1) matrix of coefficients
β = (βj,h)1≤j≤m,1≤h≤k+1 and α = (α1, . . . , αm), the reconstruction of the original series zj,t

is defined as

zR,b
j,t (f , β, α) = αj +

k∑

h=0

βj,h+1ft−h. (1)

The R superscript in zR,b
j,t stands for reconstruction and the b superscript stands for back-

ward, due to the reconstruction being defined using the lags of ft, in constrast with the

https://CRAN.R-project.org/view=TimeSeries

4 gdpc: Generalized Dynamic Principal Components

reconstruction using leads, to be defined later.

The MSE loss function when we reconstruct the m series using f , β and α is given by

MSE(f , β, α) =
1

Tm

m∑

j=1

T∑

t=1

(zj,t − zR,b
j,t (f , β, α))2 (2)

and the values that minimize this MSE are called (f̂ , β̂, α̂). The value of f̂ is not identified
as we can multiply the coefficients βj,h+1 by a constant and divide ft−h by the same contant

and the model is the same. To solve this issue we take f̂ with zero mean and unit variance. f̂

is then the first GDPC. Note that for k = 0, f̂ is the first ordinary (non-dynamic) principal
component of the data. The second GDPC is defined as the first GDPC of the residuals

rj,t = zj,t − zR,b
j,t (f̂ , β̂, α̂), 1 ≤ j ≤ m, 1 ≤ t ≤ T.

Higher order GDPC are defined in a similar fashion.

Note that the reconstruction given in Equation 1 can be written using leads instead of lags.
Suppose to simplify that αj = 0 and k = 1 so that we have

zR,b
j,t (f , β, α) = βj,1ft + βj,2ft−1.

Given f , β and α, let f∗
t+1 = ft, β∗

j,2 = βj,1, β∗
j,1 = βj,2 and α∗

j = 0. Then

zR,b
j,t (f , β, α) = zR,f

j,t (f∗, β∗, α∗) = β∗
j,2f∗

t+1 + β∗
j,1f∗

t ,

that is the same equation but now using leads. We just shift one position the series of the
principal components and interchange the values of the β coefficients to obtain an equivalent
representation but now using leads instead of lags. In general given f , β and α we can define

f∗
t+k = ft, t = 1 − k, . . . , T, (3)

β∗
j,k+2−g = βj,g, 1 ≤ g ≤ k + 1, j = 1, . . . , m, (4)

α∗
j = αj , j = 1, . . . , m (5)

and write

zR,f
j,t (f∗, β∗, α∗) = α∗

j +
k∑

h=0

β∗
j,h+1f∗

t+h.

Clearly
zR,f

j,t (f∗, β∗, α∗) = zR,b
j,t (f , β, α)

and hence we see that, without loss of generality, we can use either lags or leads of the principal
component to reconstruct the series. Moreover, minimizing the function in Equation 2 is
equivalent to minimizing

1

Tm

m∑

j=1

T∑

t=1

(zj,t − zR,f
j,t (f , β, α))2.

Since the notation is less cumbersome using leads, the derivation for the optimal solution in
Section 3 is presented using leads. Moreover, all internal computations in the gdpc package

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 5

are performed using leads. However, since the reconstruction using lags is more intuitive, the
final output is passed to the form using lags via Equations 3, 4, 5. It can be shown that
the GDPC can also be equivalently defined using a k/2 leads and k/2 lags of ft to define
the reconstruction, see Peña and Yohai (2016) for details. This explains the noisy character
of the GDPC at the ends of the sample, see Figure 4 for example, and why, like Brillinger’s
DPC, the GDPC are not directly useful for forecasting.

Note that if we are considering p dynamic principal components of order ki each, i = 1, . . . , p,
the number of values required to reconstruct the original series is

∑p
i=1(T +ki+m(ki+1)+m).

In practice, the number of components and the number of lags used for each component need
to be chosen. The MSE of the reconstruction decreases when either of these two numbers
is increased, but the amount of information needed to be stored for the reconstruction will
also increase. The number of components can be chosen so that a pre-specified fraction
of the total variance of the data is explained, as is usual in ordinary principal component
analysis. Regarding the choice of the number of lags for each component, let k be the number
of lags used to fit the component under consideration. Let ŷj,t = α̂j +

∑k
h=0 β̂j,h+1f̂t+h

be the interpolator used where yj,t = zj,t for the first component and will be equal to the
residuals from the fit with the previous components otherwise. Let rj,t = yj,t − ŷj,t, be the
residuals from the fit with the component, and R be the corresponding matrix of residuals
from this fit and let Σ = (R⊤R)/T . Given kmax, k can be chosen among 0, . . . , kmax as the
value that minimizes some criterion. This criterion should take into account the MSE of the
reconstruction and the amount of information to be stored. The following four criteria are
available in gdpc:

• Leave-one-out (LOO) cross-validation:

LOOk =
1

Tm

m∑

i=1

T∑

t=1

r2
i,t

(1 − hk,tt)2
,

where hk,tt are the diagonal elements of the hat matrix Hk = Fk(F⊤
k Fk)−1F⊤

k , with
Fk being the T × (k + 2) matrix with rows (ft−k, ft−k+1, . . . , ft, 1).

• An AIC type criterion (Akaike (1974)):

AICk = T log (trace(Σ)) + m(k + 2)2.

• A BIC type criterion (Schwarz (1978)):

BICk = T log (trace(Σ)) + m(k + 2) log T.

• A criterion based on the ICp3 proposal of Bai and Ng (2002):

BNGk = min(T, m) log (trace(Σ)) + log(min(T, m))(k + 1).

The AIC and BIC type criteria are known not to work well when the ratio T/m is small; this
is to be expected since they are based on the assumption that m is fixed and T → ∞. For the
cases in which the ratio T/m is small it is interesting to use a criterion based on both m and
T going to infinity. For this reason, we included the criterion BNGk, based on a proposal of

6 gdpc: Generalized Dynamic Principal Components

Bai and Ng (2002) for choosing the number of factors in a factor model. We will compare the
performance of the criteria in Section 6.

3. Computing the GDPC

To compute the GDPC we note that, given the component, the β coefficients are regression
coefficients that can be computed by least squares, and given the β coefficients we have again
linear equations that can be easily computed. To write the equations we have to solve we
introduce some notation. Define a ∨ b = max(a, b) and a ∧ b = min(a, b). Let

Cj(αj) = (cj,t,q(αj))1≤t≤T +k,1≤q≤k+1

be the (T + k) × (k + 1) matrix defined by

cj,t,q(αj) = (zj,t−q+1 − αj),

when 1 ∨ (t − T + 1) ≤ q ≤ (k + 1) ∧ t and zero otherwise. Let

Dj(βj) = (dj,t,q(βj))

be the (T + k) × (T + k) matrix given by

dj,t,q(βj) =
t∧T∑

v=(t−k)∨1

βj,q−v+1βj,t−v+1,

when (t − k) ∨ 1 ≤ q ≤ (t + k) ∧ (T + k) and zero otherwise. Define

D(β) =
m∑

j=1

Dj(βj).

Differentiating Equation 2 with respect to f , it is easy to show that

f = D(β)−1
m∑

j=1

Cj(α)βj (6)

where βj , j = 1, . . . , m, are the rows of β . Differentiating Equation 2 with respect to βj and
αj we obtain (

βj

αj

)
=
(
F(f)⊤

F(f)
)−1

F(f)⊤
z(j), (7)

where z(j) = (zj,1, . . . , zj,T)⊤ and F(f) is the T×(k+2) matrix with t-th row (ft, ft+1, . . . , ft+k, 1).

To define an iterative algorithm to compute (f̂ , β̂, α̂) it is enough to provide f (0) and a rule
describing how to compute β(h), α(h) and f (h+1) once f (h) is known. The following two steps
based on Equations 6 and 7 describe a natural rule to perform this recursion.

step 1 Based on Equation 7, define β
(h)
j and α

(h)
j , for 1 ≤ j ≤ m , by

(
β

(h)
j

α
(h)
j

)
=
(
F(f (h))⊤

F(f (h))
)−1

F(f (h))⊤
z(j).

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 7

step 2 Based on Equation 6, define f (h+1) by

f∗ = D(β(h))−1C(α(h))β(h)

and
f (h+1) = (T + k − 1)1/2(f∗ − f

∗
)/|||f∗ − f

∗
||.

The initial value f (0) can be chosen equal to the ordinary first principal component, completed
with k leads. We stop after niter_max iterations or when

MSE(f (h), β(h), α(h)) − MSE(f (h+1), β(h+1), α(h+1))

MSE(f (h), β(h), α(h))
< tol

for some user-supplied values tol and niter_max.

All numerically intensive computations are performed in C++, using the Armadillo linear
algebra library, Sanderson and Curtin (2016). The C++ code is integrated with R using
packages Rcpp, Eddelbuettel and François (2011), and RcppArmadillo, Eddelbuettel and
Sanderson (2014).

In step 1 of the algorithm we need to solve m least squares problems, each with T observations
and k + 2 predictor variables. The worst case complexity for solving each of these least
squares problems is O((k + 2)2T) = O(k2T). Hence the worst case complexity for step 1 of
the algorithm is O(mk2T). The worst case complexity for solving the linear system in step
2 of the algorithm is O((T + k)3). Hence, at it each iteration the worst case complexity is
O((T +k)3 +mk2T), which is linear in m. Thus, the algorithm is able to deal with very high-
dimensional problems. Note that there are no restrictions on the values of f and, in particular,
we do not assume, as in Brillinger (1981), that the GDPC must be linear combinations of the
series. Note that in Equation 6 the computation of the component is linear in the observed
data given the β parameters. Also, the β parameters are estimated as linear functions of
the observations given the GDPC by Equation 7. However, these two step estimation leads
to a component which, in general, will not be a linear function of the observed series. It
is shown in Peña and Yohai (2016) in particular stationary cases that the components are
approximately linear combinations of the data. This is a similar result to the one found in the
static case with standard principal components where we do not impose this restriction but
the optimal solution verifies it. However, when the series are not stationary this additional
flexibility leads to values of f better adapted to the possible nonstationary character of the
time series. We will back up this claim with experimental results in Section 5.

4. Using the gdpc package

There are two main functions available to the user: gdpc and auto.gdpc. We first describe
gdpc.

4.1. The gdpc function and class

The function gdpc computes a single GDPC with a number of lags that has to be provided
by the user. It has the following arguments:

• Z: Data matrix. Each column is a different time series.

8 gdpc: Generalized Dynamic Principal Components

• k: Integer. Number of lags to use.

• f_ini: (Optional). Numeric vector. Starting point for the iterations. If no argument is
passed the ordinary first principal component completed with k lags is used.

• tol: Relative precision. Default is 10−4.

• niter_max: Integer. Maximum number of iterations. Default is 500.

• crit: A string specifying the criterion to be used to evaluate the reconstruction. Options
are "LOO", "AIC", "BIC" and "BNG". Default is "LOO".

The output of this function is an S3 object of class ‘gdpc’, that is, a list with entries:

• expart: Proportion of the variance explained.

• mse: Mean squared error.

• crit: The value of the criterion of the reconstruction, according to what the user spec-
ified.

• k: Number of lags used.

• alpha: Vector of intercepts corresponding to f.

• beta: Matrix of loadings corresponding to f. Column number j is the vector of j − 1
lag loadings.

• f: Coordinates of the first dynamic principal component corresponding to the periods
1, . . . , T .

• initial_f: Coordinates of the first dynamic principal component corresponding to the
periods −k + 1, . . . , 0. Only for the case k > 0, otherwise 0.

• call: The matched call.

• conv: Logical. Did the iterations converge?

• niter: Integer. Number of iterations.

fitted, plot and print methods are available for this class.

We illustrate the use of this function with the an artificial data set. First, we load the package
and generate the artificial data.

R> library("gdpc")

R> set.seed(1234)

R> T <- 200

R> m <- 5000

R> f <- rnorm(T + 1)

R> x <- matrix(0, T, m)

R> u <- matrix(rnorm(T * m), T, m)

R> for (i in 1:m) {

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 9

+ x[, i] <- 10 * sin(2 * pi * (i / m)) * f[1:T] +

+ 10 * cos(2 * pi * (i / m)) * f[2:(T + 1)] + u[, i]

+ }

We use gdpc to compute a single GDPC using one lag. The rest of the arguments are the
default ones.

R> fit <- gdpc(x, k = 1)

R> fit

Number.of.lags LOO MSE Explained.Variance

Component 1 1 1.017 0.986 0.991

The result is stored in fit and the code fit produces the object to be printed. This shows
the number of lags used, the value of the criterion specified by the user (the default "LOO" in
this case), the MSE of the reconstruction and the fraction of explained variance. It is seen
that the reconstruction is excellent, with more than 99% of the variance of the data explained.

Now we can plot the loadings and the principal component by using the plot method for the
‘gdpc’ class. The method has the following arguments

• x: An object of class ‘gdpc’, usually the result of gdpc or one of the entries of the result
of auto.gdpc.

• which: String. Indicates what to plot, either "Component" or "Loadings". Default is
"Component".

• which_load: Lag number indicating which loadings should be plotted. Only used if
which = "Loadings". Default is 0.

• ...: Additional arguments to be passed to the plotting functions.

Continuing with our example, we plot the loadings and the principal component.

R> par(mfrow = c(3, 1))

R> plot(fit, which = "Loadings", which_load = 0, xlab = "", ylab = "")

R> plot(fit, which = "Loadings", which_load = 1, xlab = "", ylab = "")

R> plot(fit, which = "Component", xlab = "", ylab = "")

The result is shown in Figure 1.

The reconstruction of the original series can be obtained using the fitted method for the
‘gdpc’ class. We store it in recons.

R> recons <- fitted(fit)

We can compare the approximate amount of storage needed for the original data set and for
the fit objectx and the gdpc object fit.

R> object.size(x)

10 gdpc: Generalized Dynamic Principal Components

0 1000 2000 3000 4000 5000

−
1
0

−
5

0
5

1
0

0 lag loadings

0 1000 2000 3000 4000 5000

−
1
0

−
5

0
5

1
0

1 lag loadings

0 50 100 150 200

−
2

−
1

0
1

2
3

Principal Component

Figure 1: Plot of the loadings and principal component for an artificial data set.

8000216 bytes

R> object.size(fit)

124352 bytes

Hence, the amount of memory needed to store fit is about 1.6% of that needed to store x.

4.2. The auto.gdpc function and the ‘gdpcs’ class

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 11

The function auto.gdpc computes several GDPC. The number of components can be supplied
by the user or chosen automatically so that a given proportion of variance is explained. The
number of lags is chosen automatically using one of the criteria listed in Section 2. The
function has the following arguments

• Z: Data matrix. Each column is a different time series.

• crit: A string specifying the criterion to be used to choose the number of lags. Options
are "LOO", "AIC", "BIC" and "BNG". Default is "LOO".

• normalize: Integer. Either 1, 2 or 3. Indicates whether the data should be standard-
ized. Default is 1. See details below.

• auto_comp: Logical. If TRUE compute components until the proportion of explained
variance is equal to expl_var, otherwise use num_comp components. Default is TRUE.

• expl_var: A number between 0 and 1. Desired proportion of explained variance (only
used if auto_comp==TRUE). Default is 0.9.

• num_comp: Integer. Number of components to be computed (only used if
auto_comp==FALSE). Default is 5.

• tol: Relative precision. Default is 10−4.

• k_max: Integer. Maximum possible number of lags. Default is 10.

• niter_max: Integer. Maximum number of iterations. Default is 500.

• ncores: Integer. Number of cores to be used for parallel computations. Default is 1.

• verbose: Logical. Should progress be reported? Default is FALSE.

The argument normalize indicates whether the data should be normalized. If normalize =
1, the data is analysed in the original units, without mean and variance standardization. If
normalize = 2, the data is standardized to zero mean and unit variance before computing
the principal components, but the intercepts and loadings are those needed to reconstruct
the original series. If normalize = 3 the data are standardized as in normalize = 2, but the
intercepts and the loadings are those needed to reconstruct the standardized series. Default
is normalize = 1, and hence the data is analysed in its original units.

The choice of "LOO" as the default criterion for choosing the number of lags is justified in
Section 6. The optimal number of lags for each component can be computed in parallel,
using the R packages doParallel, Analytics and Weston (2018) and foreach, Kane, Emerson,
and Weston (2013). The argument ncores indicates the number of cores to be used for the
parallel computations. The default value is 1, and hence by default no parallel computations
are performed. If verbose=TRUE a message is printed each time a component is succesfully
computed.

The output of auto.gdpc is an S3 object of class ‘gdpcs’, that is, a list of length equal to the
number of computed components. The i-th entry of this list is an object of class ‘gdpc’ that
stores the information of the i-th dynamic principal component, that is, a list with entries

• expart: Proportion of the variance explained by the first i components.

12 gdpc: Generalized Dynamic Principal Components

• mse: Mean squared error of the reconstruction using the first i components.

• crit: The value of the criterion of the reconstruction, according to what the user spec-
ified.

• k: Number of lags chosen.

• alpha: Vector of intercepts corresponding to f.

• beta: Matrix of loadings corresponding to f. Column number j is the vector of j − 1
lag loadings.

• f: Coordinates of the i-th dynamic principal component corresponding to the periods
1, . . . , T .

• initial_f: Coordinates of the i-th dynamic principal component corresponding to the
periods −k + 1, . . . , 0. Only for the case k > 0, otherwise 0.

• call: The matched call.

• conv: Logical. Did the iterations converge?

• niter: Integer. Number of iterations.

components, fitted, plot and print methods are available for this class.

We illustrate the use of this function with a real data set, pricesSP50, that is part of the
package. The data set if formed by fifty series corresponding to the stock prices of the first
50 components of the Standard&Poor’s 500 index. Five hundred daily observations starting
1/1/2010 are available. The class of the object storing the data set is ‘mts’.

The data set can be loaded and part of it can be plotted using the following commands

R> data("pricesSP50")

R> plot(pricesSP50[, 1:4], main = "Four components of the S&P500 index")

The plot is shown in Figure 2.

Next, we apply auto.gdpc to the data set, storing the result in fit_SP. Since some of the
series are significantly more variable than others, we apply the procedure to the normalized
data set using the option normalize=2. Since convergence is somewhat slow for this data
set, we increased the maximum number of iterations from the default 500 to 1000 by setting
niter_max=1000. We used 8 cores to perform the computation, by setting ncores=8. The
rest of the arguments are left to their default values. In particular the number of lags for
each component is chosen as the value than minimizes the LOO criterion and the number of
components is chosen so that the reconstruction explains at least 90% of the variance of the
data.

R> fit_SP <- auto.gdpc(pricesSP50, normalize = 2, niter_max = 1000,

+ ncores = 8)

R> fit_SP

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 13

6
5

7
0

7
5

8
0

8
5

M
M

M

1
9

2
0

2
1

2
2

2
3

2
4

A
B

T

3
5

4
0

4
5

5
0

5
5

A
C

N

1
0

1
1

1
2

1
3

0 100 200 300 400 500

A
T

V
I

Time

Four components of the S&P500 index

Figure 2: Plot of four components of the S&P500 index.

Number.of.lags LOO MSE Explained.Variance

Component 1 10 0.185 0.174 0.826

Component 2 8 0.074 0.071 0.929

The whole computation took about 3 minutes on R version 3.4.0 on a computer running OS
X El Capitan 10.11.4 64-bit with an Intel Xeon CPU E5-1650 v2 3.50GHz. Entering fit_SP

produces the object to be printed. A table is printed where row i shows the number of lags
used in component i, the value of the criterion specified by the user (the default "LOO" in this
case) in component i, the MSE of the reconstruction using the components 1, . . . , i and the
fraction of explained variance by the reconstruction using components 1, . . . , i. Note that the
MSEs and the criteria are those of the reconstruction of the normalized series in this case.

We can obtain the reconstruction of the original time series using the fitted method for the
‘gdpcs’ class. The method has the following arguments

• object: An object of class ‘gdpcs’, usually the result of auto.gdpc.

• num_comp: Integer indicating how many components to use for the reconstruction.
Default is 1.

14 gdpc: Generalized Dynamic Principal Components

6
5

7
0

7
5

8
0

8
5

M
M

M

1
9

2
0

2
1

2
2

2
3

2
4

A
B

T

3
5

4
0

4
5

5
0

5
5

A
C

N

9
.5

1
0

.0
1

1
.0

1
2

.0

0 100 200 300 400 500

A
T

V
I

Time

Reconstruction of four components of the S&P500 index

Figure 3: Plot of the reconstruction of four components of the S&P500 index.

• . . . : Additional arguments for compatibility.

Note that the gdpc package supports ‘mts’, ‘xts’ and ‘zoo’ objects. The principal compo-
nents and reconstructed time series will be stored in an object of class ‘mts’, ‘xts’ or ‘zoo’
respectively, the same as the original data, with the same date attributes. Thus, since the
pricesSP50 data was stored in an object of class ‘mts’, the reconstructed time series will be
of class ‘mts’, with the same date attributes.

We store the reconstructed time series using both computed components in an mts object
called recons, assign each of the series its corresponding name, and plot the first four series.
The result is shown in Figure 3.

R> recons <- fitted(fit_SP, num_comp = 2)

R> colnames(recons) <- colnames(pricesSP50)

R> plot(recons[, 1:4],

+ main = "Reconstruction of four components of the S&P500 index")

We can get the dynamic principal components using the components method for the class
‘gdpcs’. The method has the following arguments

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 15

• object: An object of class ‘gdpcs’, usually the result of auto.gdpc.

• which_comp: Numeric vector indicating which components to get. Default is 1.

Since the original data was stored in an object of class ‘mts’, the components will also be of
class ‘mts’. We store the components in an ‘mts’ object called comps.

R> comps <- components(fit_SP, which_comp = c(1, 2))

We can either directly plot the comps time series matrix or use the plot method for the class
‘gdpcs’. The method has the following arguments

• x: An object of class ‘gdpcs’, usually the result of auto.gdpc.

• plot.type: Argument to be passed to the plot for ‘zoo’ objects. Used only when the
original data set was stored in an object of class ‘zoo’. Default is "multiple".

• which_comp: Numeric vector indicating which components to plot. Default is 1.

• . . . : Additional arguments to be passed to the plotting functions.

Using the plot method for the ‘gdpcs’ we can plot both principal components. The result is
shown in Figure 4.

R> plot(fit_SP, which_comp = c(1, 2))

We can compare the approximate amount of storage needed for the original data set pricesSP50

and the ‘gdpcs’ object fit_SP.

R> object.size(fit_SP)

31184 bytes

R> object.size(pricesSP50)

204192 bytes

Hence, the amount of memory needed to store fit_SP is about 14% of that needed to store
pricesSP50.

5. Reconstructing non-stationary data

We compare the performance of GDPC and the dynamic principal components proposed by
Brillinger (1981) by conducting a small simulation study. We consider the following VARI(1,1)
model. The data is generated according to

zt = zt−1 + xt,

16 gdpc: Generalized Dynamic Principal Components

−
1

0
1

2

C
o

m
p

o
n

e
n

t
n
u

m
b

e
r

1

−
1

.5
−

0
.5

0
.0

0
.5

1
.0

1
.5

0 100 200 300 400 500

C
o

m
p

o
n

e
n

t
n
u

m
b

e
r

2

Time

Principal Components

Figure 4: Plot of the first two dynamic principal components of the pricesSP50 data set.

where xt satisfies a stationary VAR(1) model

xt = Axt−1 + ut.

The ut are i.i.d. with a standard multivariate normal distribution. In each replication the
matrix A is generated randomly as A = VΛV⊤, where V is an orthogonal matrix generated
at random with uniform distribution and Λ is a diagonal matrix with diagonal elements are
independent random variables with uniform distribution on the [0, 0.9] interval. Note that
the generated vector time series is not stationary.

We computed GDPC using one component and k = 10 lags and the dynamic principal
components of Brillinger (DPC) using one component with 5 leads and 5 lags. We used
the dpca function from the freqdom package (Hormann and Kidzinski 2017) to compute the
method proposed by Brillinger. We take (m, T) ∈ {10, 50, 100} × {100, 200} and do 500
replications. Table 1 shows the results. We report the average computation time in seconds
and the average fraction of variance explained. We see that the reconstructions obtained
with GDPC are much better than those obtained with DPC, with the fraction of variance
explained by GDPC being around 0.90 to 0.95, and the fraction of variance explained by DPC
being around 0.65 to 0.70. Moreover, the computation times in seconds for GDPC are much

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 17

GDPC DPC

T m Time Explained Variance Time Explained Variance

100 10 1.34 0.95 2.87 0.72
50 1.51 0.95 21.11 0.69
100 1.69 0.94 90.09 0.68

200 10 8.76 0.93 2.94 0.69
50 7.77 0.92 21.74 0.65
100 7.79 0.91 92.94 0.64

Table 1: Average computation time in seconds and fraction of explained variance for each
method.

lower. For example, for the case of T = m = 100, GDPC takes on average 1.69 seconds to
compute a solution whereas the same task takes 90 seconds using DPC.

6. The performance of the lag selection criteria

In this section we compare the performance of the four different criteria available in the
gdpc package to automatically choose the number of lags used to define the GDPC. Since we
propose to choose the number of components to explain a given fraction of the variance in
the data, we focus on the case in which one component is to be computed. We consider the
following two scenarios.

• DFM1: The data is generated as

zj,t = b0,jft + b1,jft−1 + ej,t, 1 ≤ t ≤ T, 1 ≤ j ≤ m.

ft follows a stationary AR(1) model, ft = θft−1 + ut, with standard normal innovations
and θ generated at random on the (−1, 1) interval at each replication. The loadings
b0,j , b1,j , j = 1, . . . , m are generated at random uniformly on the (−1, 1) interval. The
variables ej,t are generated as i.i.d. standard normal. This is a dynamic factor model
with one factor and one lag.

• DFM2: The data is generated as

zj,t = b0,jft + b1,jft−1 + b2,jft−2 + ej,t, 1 ≤ t ≤ T, 1 ≤ j ≤ m.

The factor ft follows a stationary MA(1) model, ft = θut−1 + ut with standard normal
innovations and with θ generated at random at each replication, uniformly on the (−1, 1)
interval. The loadings and the errors are generated as in model DFM1. This is a dynamic
factor model with one factor and two lags.

We take (m, T) ∈ {5, 10, 20, 200, 800} × {200, 400} and do 500 replications. We report the
average number of lags chosen by each criterion and the resulting average reconstruction mean
squared error. Tables 2 and 3 show the results.

We see that in the cases in which the dimension of the vector time series is small, say m = 5
or m = 10, and the sample size is large, the AIC does well, choosing a number of lags close

18 gdpc: Generalized Dynamic Principal Components

DFM1 DFM2

T m BNG LOO AIC BIC BNG LOO AIC BIC

200 5 0.02 4.14 0.81 0.26 0.00 4.02 1.64 0.54
10 0.08 2.51 0.43 0.06 0.02 2.73 0.92 0.00
20 0.28 1.27 0.15 0.00 0.29 2.15 0.01 0.00
200 1.01 1.01 0.00 0.00 2.00 2.00 0.00 0.00
800 1.01 1.01 0.00 0.00 2.00 2.00 0.00 0.00

400 5 0.02 3.76 0.95 0.51 0.00 3.83 1.88 1.16
10 0.08 2.00 0.80 0.20 0.02 2.79 1.75 0.19
20 0.19 1.15 0.38 0.03 0.18 2.10 0.83 0.00
200 1.02 1.02 0.00 0.00 2.00 2.01 0.00 0.00
800 1.01 1.01 0.00 0.00 2.00 2.00 0.00 0.00

Table 2: Average number of lags chosen by each method in scenarios DFM1 and DFM2.

to the true values (1 for DFM1, 2 for DFM2). In this cases BNG tends to underestimate
the required number of lags, whereas LOO tends to overestimate it. For moderate sized
problems, with m = 20, LOO does best all around. For the case of high-dimensional vector
time series (m = 200, 800), BNG and LOO perform similarly, choosing a number of lags that
is on average very close to the truth. In this cases AIC underestimates the number of lags
needed. BIC tends to underestimate the required number of lags in all cases and does not
perform well at all in any of the cases considered here.

In Table 3 we see that: in the cases where the methods choose on average a number of lags
close to the true values, the reconstruction errors are close to the variance of the idiosyncratic
part, which is 1 in this case. In cases where the methods overestimate the number of lags
needed, the reconstruction error is smaller than the idiosyncratic variance, see for example
the case of T = 200, m = 5 for the LOO criterion. This is to be expected, since if a larger
number of lags than needed is used, the components will also explain part of the variance
in the idiosyncratic part. In cases where the number of lags needed is underestimated, the
reconstruction error is larger than 1, see for example the case of T = 200 and m = 800 for
the BIC criterion.

Since we believe the main appeal of GDPC is for moderate to large sized panels of time series,
the default criterion used in auto.gdpc is LOO. However, for small panels better results can
be obtained by using the AIC criterion.

7. Computing times

In this section, we estimate the run times of our implementation of the algorithm described
in Section 3 for different problem sizes by conducting a small simulation study. Timings were
carried out for the gdpc function, since it is the one that implements the main numerical
algorithm. Timings were carried out on R version 3.4.4 on a computer running Linux Ubuntu
18.04 64-bit with an Intel Core i7-7560U @ 2.40GHz x4.

We take (m, T) ∈ {100, 1000, 2000} × {200, 400} and consider the following two models.

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 19

DFM1 DFM2

T m BNG LOO AIC BIC BNG LOO AIC BIC

200 5 0.88 0.75 0.80 0.83 0.96 0.75 0.79 0.87
10 0.97 0.87 0.92 0.98 1.08 0.87 0.95 1.09
20 1.00 0.93 1.02 1.06 1.09 0.93 1.14 1.15
200 0.98 0.98 1.11 1.11 0.98 0.98 1.19 1.19
800 0.98 0.98 1.11 1.11 0.98 0.98 1.20 1.20

400 5 0.88 0.78 0.80 0.82 0.96 0.78 0.79 0.82
10 0.98 0.89 0.91 0.96 1.08 0.89 0.90 1.04
20 1.01 0.94 0.98 1.05 1.11 0.94 1.03 1.15
200 0.99 0.99 1.12 1.12 0.99 0.98 1.20 1.20
800 0.99 0.99 1.13 1.13 0.99 0.99 1.21 1.21

Table 3: Average reconstruction mean squared error for scenarios DFM1 and DFM2, when
the number of lags is chosen by each method.

• DFM3: The data is generated according to

zj,t = sin(2π(j/m))ft + cos(2π(j/m))ft−1 + ej,t, 1 ≤ t ≤ T, 1 ≤ j ≤ m,

where the ej,t are i.i.d. standard normal variables. The vector of factors ft = (f1t, f2t)
is generated according to a vector autoregressive model ft = Aft−1 + vtb, where the vt

are i.i.d. standard normals, A is a diagonal matrix with diagonal equal to (−0.8, 0.7)
and b = (1, 1)⊤. Note that the resulting time series is stationary.

• DFM4: The data is generated according to

zj,t = sin(2π(j/m))ft + cos(2π(j/m))ft−1 + (j/m)ft−2 + ej,t, 1 ≤ t ≤ T, 1 ≤ j ≤ m,

where the ej,t are i.i.d. standard normal variables. The factor ft follows an integrated
MA(1) model, ft = ft−1 + θft−1 + ut, with standard normal innovations and where θ is
generated at random uniformly on the (−0.8, 0.8) interval at each replication. Note the
the resulting time series is non-stationary.

We used k = 5 lags for the first model and k = 2 for the second model. We report the average
computation times in seconds over 500 replications.

The results are shown in Table 4. We see that in the stationary case (DFM3) the algorithm can
compute solutions for data sets with thousands of time series in under 15 seconds. It is seen
that the convergence of the algorithm is slower in the non-stationary case (DFM4), since the
computing times increase drastically for problems of the same size as before. However, even
in the non-stationary case, the algorithm can compute solutions to problems with thousands
of time series in under 1 minute. Moreover, note that computations were performed on an
ordinary desktop computer, on a high-performance cluster we expect the algorithm to be able
to compute the GDPC for tens of thousands of series in a matter of minutes.

8. Conclusions

20 gdpc: Generalized Dynamic Principal Components

T m DFM3 DFM4

200 100 0.35 0.92
1000 2.07 5.89
2000 3.88 11.50

400 100 1.38 4.48
1000 6.86 22.01
2000 12.68 40.46

Table 4: Average computing times in seconds for stationary and non-stationary factor models.

The gdpc package provides functions to compute the generalized dynamic principal compo-
nents for a set of time series. These components are useful to reconstruct the series and to
describe their underlying dynamic structure. Also, they can be used as estimators of the com-
mon part in a dynamic factor model, as shown in Section 6 and by the theoretical results in
Smucler (2019). The package is useful for the analysis of large data sets, even when the num-
ber of series is much larger than the length of the series. The gdpc package is available from
the Comprehensive R Archive Network at https://CRAN.R-project.org/package=gdpc, in-
cluding the pricesSP50 data set.

Acknowledgments

The authors would like to thank two anonymous reviewers and the editors for their helpful
comments. Part of this work was conducted while Ezequiel Smucler was a Ph.D student
at the Deparment of Mathematics at Universidad de Buenos Aires, funded by a CONICET
fellowship.

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723. doi:10.1109/tac.1974.1100705.

Analytics R, Weston S (2018). doParallel: Foreach Parallel Adaptor for the ’parallel’ Package.
R package version 1.0.14, URL https://CRAN.R-project.org/package=doParallel.

Bai J, Ng S (2002). “Determining the Number of Factors in Approximate Factor Models.”
Econometrica, 70(1), 191–221. doi:10.1111/1468-0262.00273.

Brillinger DR (1964). “The Generalization of the Techniques of Factor Analysis, Canonical
Correlation and Principal Components to Stationary Time Series.” Invited Paper at the
Royal Statistical Society Conference in Cardiff, Wales. doi:10.2307/2343903.

Brillinger DR (1981). Time Series: Data Analysis and Theory. Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics. ISBN 9780898715019.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

https:// CRAN.R-project.org/package=gdpc
http://dx.doi.org/10.1109/tac.1974.1100705
https://CRAN.R-project.org/package=doParallel
http://dx.doi.org/10.1111/1468-0262.00273
http://dx.doi.org/10.2307/2343903
http://dx.doi.org/10.18637/jss.v040.i08

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 21

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:

10.1016/j.csda.2013.02.005.

Forni M, Hallin M, Lippi M, Reichlin L (2000). “The Generalized Dynamic-Factor Model:
Identification and Estimation.” The Review of Economics and Statistics, 82(4), 540–554.
doi:10.1162/003465300559037.

Forni M, Hallin M, Lippi M, Reichlin L (2005). “The Generalized Dynamic Factor Model:
One-Sided Estimation and Forecasting.” Journal of the American Statistical Association,
100(471), 830–840. doi:10.1198/016214504000002050.

Forni M, Hallin M, Lippi M, Zaffaroni P (2015). “Dynamic Factor Models with Infinite-
Dimensional Factor Spaces: One-Sided Representations.” Journal of Econometrics, 185(2),
359 – 371. doi:10.1016/j.jeconom.2013.10.017.

Forni M, Hallin M, Lippi M, Zaffaroni P (2017). “Dynamic Factor Models with Infinite-
Dimensional Factor Space: Asymptotic Analysis.” Journal of Econometrics, 199(1), 74–92.
doi:10.1016/j.jeconom.2017.04.002.

Geweke J (1977). “The Dynamic Factor Analysis of Economic Time Series Models.” In
DJ Aigner, AS Goldberger (eds.), Latent Variables in Socio-Economic Models, pp. 365–
383. North-Holland Publishing Company, Amsterdam.

Hallin M, Lippi M (2013). “Factor Models in High-Dimensional Time Series-A Time-Domain
Approach.” Stochastic Processes and their Applications, 123(7), 2678–2695. doi:10.1016/

j.spa.2013.04.001.

Hormann S, Kidzinski L (2017). freqdom: Frequency Domain Based Analysis: Dynamic PCA.
R package version 2.0.1, URL https://CRAN.R-project.org/package=freqdom.

Hu YP, Chou RJ (2004). “On The Peña-Box Model.” Journal of Time Series Analysis, 25(6),
811–830. doi:10.1111/j.1467-9892.2004.00381.x.

Kane M, Emerson J, Weston S (2013). “Scalable Strategies for Computing with Massive
Data.” Journal of Statistical Software, 55(1), 1–19. doi:10.18637/jss.v055.i14.

Kidzinski L, Jouzdani N, Kokoszka P (2017). pcdpca: Dynamic Principal Components for
Periodically Correlated Functional Time Series. R package version 0.4, URL https://

CRAN.R-project.org/package=pcdpca.

Lam C, Yao Q (2012). “Factor Modeling for High-Dimensional Time Series: Inference for the
Number of Factors.” The Annals of Statistics, 40(2), 694–726. doi:10.1214/12-aos970.

Nicholson W, Matteson D, Bien J (2019). BigVAR: Dimension Reduction Methods for Mul-
tivariate Time Series. R package version 1.0.4, URL https://CRAN.R-project.org/

package=BigVAR.

Pan J, Yao Q (2008). “Modelling Multiple Time Series via Common Factors.” Biometrika,
95(2), 365–379. doi:10.1093/biomet/asn009.

http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1162/003465300559037
http://dx.doi.org/10.1198/016214504000002050
http://dx.doi.org/10.1016/j.jeconom.2013.10.017
http://dx.doi.org/10.1016/j.jeconom.2017.04.002
http://dx.doi.org/10.1016/j.spa.2013.04.001
http://dx.doi.org/10.1016/j.spa.2013.04.001
https://CRAN.R-project.org/package=freqdom
http://dx.doi.org/10.1111/j.1467-9892.2004.00381.x
http://dx.doi.org/10.18637/jss.v055.i14
https://CRAN.R-project.org/package=pcdpca
https://CRAN.R-project.org/package=pcdpca
http://dx.doi.org/10.1214/12-aos970
https://CRAN.R-project.org/package=BigVAR
https://CRAN.R-project.org/package=BigVAR
http://dx.doi.org/10.1093/biomet/asn009

22 gdpc: Generalized Dynamic Principal Components

Peña D, Smucler E, Yohai VJ (2020). “gdpc: An R Package for Generalized Dynamic Principal
Components.” Journal of Statistical Software, Code Snippets, 92(2), 1–23. ISSN 1548-7660.
doi:10.18637/jss.v092.c02. URL https://www.jstatsoft.org/v092/c02.

Peña D, Box GEP (1987). “Identifying a Simplifying Structure in Time Series.” Journal
of the American Statistical Association, 82(399), 836–843. doi:10.1080/01621459.1987.

10478506.

Peña D, Poncela P (2006). “Nonstationary Dynamic Factor Analysis.” Journal of Statistical
Planning and Inference, 136(4), 1237–1257. doi:10.1016/j.jspi.2004.08.020.

Peña D, Smucler E, Yohai VJ (2018). gdpc: Generalized Dynamic Principal Components. R

package version 1.1.0, URL https://CRAN.R-project.org/package=gdpc.

Peña D, Yohai VJ (2016). “Generalized Dynamic Principal Components.” Journal of the
American Statistical Association, 111(515), 1121–1131. doi:10.1080/01621459.2015.

1072542.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan JA, Ulrich JM (2018). xts: eXtensible Time Series. R package version 0.11-2, URL
https://CRAN.R-project.org/package=xts.

Sanderson C, Curtin R (2016). “Armadillo: A Template-Based C++ Library for Linear
Algebra.” The Journal of Open Source Software, 1(2). doi:10.21105/joss.00026.

Sargent TJ, Sims CA (1977). “Business Cycle Modeling Without Pretending to Have Too
Much A Priori Economic Theory.” Working Papers 55, Federal Reserve Bank of Minneapo-
lis. URL https://ideas.repec.org/p/fip/fedmwp/55.html.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Smucler E (2019). “Consistency of generalized dynamic principal components in dynamic
factor models.” Statistics and Probability Letters, 154, 108536. doi:https://doi.org/

10.1016/j.spl.2019.06.012.

Stock JH, Watson MW (2002). “Forecasting Using Principal Components From a Large
Number of Predictors.” Journal of the American Statistical Association, 97(460), 1167–
1179. doi:10.1198/016214502388618960.

Tsay RS, Wood D (2018). MTS: All-Purpose Toolkit for Analyzing Multivariate Time Series
(MTS) and Estimating Multivariate Volatility Models. R package version 1.0, URL https:

//CRAN.R-project.org/package=MTS.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. doi:10.18637/jss.v014.i06.

http://dx.doi.org/10.18637/jss.v092.c02
https://www.jstatsoft.org/v092/c02
http://dx.doi.org/10.1080/01621459.1987.10478506
http://dx.doi.org/10.1080/01621459.1987.10478506
http://dx.doi.org/10.1016/j.jspi.2004.08.020
https://CRAN.R-project.org/package=gdpc
http://dx.doi.org/10.1080/01621459.2015.1072542
http://dx.doi.org/10.1080/01621459.2015.1072542
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
http://dx.doi.org/10.21105/joss.00026
https://ideas.repec.org/p/fip/fedmwp/55.html
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/https://doi.org/10.1016/j.spl.2019.06.012
http://dx.doi.org/https://doi.org/10.1016/j.spl.2019.06.012
http://dx.doi.org/10.1198/016214502388618960
https://CRAN.R-project.org/package=MTS
https://CRAN.R-project.org/package=MTS
http://dx.doi.org/10.18637/jss.v014.i06

Daniel Peña, Ezequiel Smucler, Victor J. Yohai 23

Affiliation:

Daniel Peña
UC3M-BS Institute of Financial Big Data and
Department of Statistics
Universidad Carlos III de Madrid
E-mail: daniel.pena@uc3m.es

Ezequiel Smucler
Department of Mathematics and Statistics
Universidad Torcuato Di Tella
Avenida Figueroa Alcorta 7350
Buenos Aires 1428, Argentina
E-mail: esmucler@utdt.edu

Victor J. Yohai
Instituto de Cálculo
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón 2
Buenos Aires 1428, Argentina
E-mail: vyohai@dm.uba.ar

mailto:daniel.pena@uc3m.es
mailto:esmucler@utdt.edu
mailto:vyohai@dm.uba.ar

	Introduction
	Definition of generalized dynamic principal components
	Computing the GDPC
	Using the gdpc package
	The gdpc function and class
	The auto.gdpc function and the gdpcs class

	Reconstructing non-stationary data
	The performance of the lag selection criteria
	Computing times
	Conclusions

