
Package ‘groupdata2’
August 5, 2019

Title Creating Groups from Data

Version 1.1.2

Description Methods for dividing data into groups.
Create balanced partitions and cross-validation folds.
Perform time series windowing and general grouping and splitting of data.
Balance existing groups with up- and downsampling.

Depends R (>= 3.5)

License MIT + file LICENSE

URL https://github.com/ludvigolsen/groupdata2

BugReports https://github.com/ludvigolsen/groupdata2/issues

Encoding UTF-8

LazyData true

Imports dplyr (>= 0.8.1), tibble (>= 2.1.1), plyr (>= 1.8.4), utils,
numbers (>= 0.7-1), rlang (>= 0.3.4)

RoxygenNote 6.1.1

Suggests ggplot2, knitr, rmarkdown, tidyr, broom, testthat, lmerTest,
hydroGOF, covr

VignetteBuilder knitr

NeedsCompilation no

Author Ludvig Renbo Olsen [aut, cre]

Maintainer Ludvig Renbo Olsen <r-pkgs@ludvigolsen.dk>

Repository CRAN

Date/Publication 2019-08-05 15:10:05 UTC

R topics documented:
all_groups_identical . 2
balance . 3
differs_from_previous . 6

1

https://github.com/ludvigolsen/groupdata2
https://github.com/ludvigolsen/groupdata2/issues

2 all_groups_identical

downsample . 8
find_missing_starts . 10
find_starts . 11
fold . 13
group . 17
groupdata2 . 20
group_factor . 21
partition . 24
splt . 27
upsample . 29
%primes% . 31
%staircase% . 32

Index 34

all_groups_identical Test if two grouping factors contain the same groups.

Description

Checks whether two grouping factors contain the same groups, looking only at the group members,
allowing for different group names / identifiers.

Usage

all_groups_identical(x, y)

Arguments

x, y Two grouping factors (vectors/factors with group identifiers) to compare.

Details

Both factors are sorted by x. A grouping factor is created with new groups starting at the values in
y which differ from the previous row (i.e. group() with method = "l_starts" and n = "auto").
A similar grouping factor is created for x, to have group identifiers range from 1 to the number of
groups. The two generated grouping factors are tested for equality.

Value

Whether all groups in x are the same in y, memberwise. (logical)

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: fold, group_factor, group, partition, splt

balance 3

Examples

Attach groupdata2
library(groupdata2)

Same groups, different identifiers
x1 <- c(1,1,2,2,3,3)
x2 <- c(2,2,1,1,4,4)
all_groups_identical(x1, x2) # TRUE

Same groups, different identifier types
x1 <- c(1,1,2,2,3,3)
x2 <- c("a","a","b","b","c","c")
all_groups_identical(x1, x2) # TRUE

Not same groups
Note that all groups must be the same to return TRUE
x1 <- c(1,1,2,2,3,3)
x2 <- c(1,2,2,3,3,3)
all_groups_identical(x1, x2) # FALSE

Different number of groups
x1 <- c(1,1,2,2,3,3)
x2 <- c(1,1,1,2,2,2)
all_groups_identical(x1, x2) # FALSE

balance Balance groups by up- and downsampling.

Description

Uses up- and/or downsampling to fix the group sizes to the min, max, mean, or median group size
or to a specific number of rows. Has a range of methods for balancing on ID level.

Usage

balance(data, size, cat_col, id_col = NULL, id_method = "n_ids",
mark_new_rows = FALSE, new_rows_col_name = ".new_row")

Arguments

data Data frame.

size Size to fix group sizes to. Can be a specific number, given as a whole number,
or one of the following strings: "min", "max", "mean", "median".

number: Fix each group to have the size of the specified number of row. Uses
downsampling for groups with too many rows and upsampling for groups with
too few rows.

min: Fix each group to have the size of smallest group in the dataset. Uses
downsampling on all groups that have too many rows.

4 balance

max: Fix each group to have the size of largest group in the dataset. Uses
upsampling on all groups that have too few rows.

mean: Fix each group to have the mean group size in the dataset. The mean is
rounded. Uses downsampling for groups with too many rows and upsampling
for groups with too few rows.

median: Fix each group to have the median group size in the dataset. The
median is rounded. Uses downsampling for groups with too many rows and
upsampling for groups with too few rows.

cat_col Name of categorical variable to balance by. (Character)

id_col Name of factor with IDs. (Character)
IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the id_method.
E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.

id_method Method for balancing the IDs. (Character)
n_ids, n_rows_c, distributed, or nested.

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.

n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.

nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

mark_new_rows Add column with 1s for added rows, and 0s for original rows. (Logical)
new_rows_col_name

Name of column marking new rows. Defaults to ".new_row".

Details

Without id_col: Upsampling is done with replacement for added rows, while the original data
remains intact. Downsampling is done without replacement, meaning that rows are not duplicated
but only removed.

With id_col: See id_method description.

balance 5

Value

Data frame with added and/or deleted rows. Ordered by cat_col and (potentially) id_col.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other sampling functions: downsample, upsample

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using balance() with specific number of rows
balance(df, 3, cat_col="diagnosis")

Using balance() with min
balance(df, "min", cat_col="diagnosis")

Using balance() with max
balance(df, "max", cat_col="diagnosis")

Using balance() with id_method "n_ids"
With column specifying added rows
balance(df, "max", cat_col="diagnosis",

id_col="participant", id_method="n_ids",
mark_new_rows = TRUE)

Using balance() with id_method "n_rows_c"
With column specifying added rows
balance(df, "max", cat_col="diagnosis",

id_col="participant", id_method="n_rows_c",
mark_new_rows = TRUE)

Using balance() with id_method "distributed"
With column specifying added rows
balance(df, "max", cat_col="diagnosis",

id_col="participant", id_method="distributed",
mark_new_rows = TRUE)

Using balance() with id_method "nested"

6 differs_from_previous

With column specifying added rows
balance(df, "max", cat_col="diagnosis",

id_col="participant", id_method="nested",
mark_new_rows = TRUE)

differs_from_previous Find values in a vector that differ from the previous value.

Description

Finds values, or indices of values, that differ from the previous value by some threshold(s).

Operates with both a positive and a negative threshold. Depending on direction, it checks if the
difference to the previous value is:

• greater than or equal to the positive threshold.

• less than or equal to the negative threshold.

Usage

differs_from_previous(data, col = NULL, threshold = NULL,
direction = "both", return_index = FALSE, include_first = FALSE,
factor_conversion_warning = TRUE)

Arguments

data Data frame or Vector
N.B. If checking a factor, it is converted to a character vector. This means that
factors can only be used when threshold is NULL. Conversion will generate a
warning, which can be turned off by setting factor_conversion_warning to
FALSE.

col Name of column to find values that differ in. Used when data is data frame.
(Character)

threshold Threshold to check difference to previous value to.
NULL, numerical scalar or numerical vector with length 2.

NULL: Checks if the value is different from the previous value.
Ignores direction.
N.B. Works for both numerical and character vectors.

Numerical scalar: Positive number.
Negative threshold is the negated number.
N.B. Only works for numerical vectors.

Numerical vector with length 2: Given as c(negative threshold,positive
threshold).
Negative threshold must be a negative number and positive threshold must be
a positive number.
N.B. Only works for numerical vectors.

differs_from_previous 7

direction both, positive or negative. (character)
both: Checks whether the difference to the previous value is

• greater than or equal to the positive threshold.
• less than or equal to the negative threshold.

positive: Checks whether the difference to the previous value is
• greater than or equal to the positive threshold.

negative: Checks whether the difference to the previous value is
• less than or equal to the negative threshold.

return_index Return indices of values that differ. (Logical)
include_first Whether to include first element in vector in output. (Logical)
factor_conversion_warning

Generate warning when converting factor to character. (Logical)

Value

Vector with either differing values or indices of differing values.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: find_missing_starts, find_starts, group_factor, group

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame('a' = c('a','a','b','b','c','c'),

'n' = c(1,3,6,2,2,4))

Get differing values in column 'a' with no threshold.
This will simply check, if it is different to the previous value or not.
differs_from_previous(df, col = 'a')

Get indices of differing values in column 'a' with no threshold.
differs_from_previous(df, col = 'a', return_index = TRUE)

Get values, that are 2 or more greater than the previous value
differs_from_previous(df, col = 'n', threshold=2, direction="positive")

Get values, that are 4 or more less than the previous value
differs_from_previous(df, col = 'n', threshold=4, direction="negative")

Get values, that are either 2 or more greater than the previous value
or 4 or more less than the previous value
differs_from_previous(df, col = 'n', threshold=c(-4,2), direction="both")

8 downsample

downsample Downsampling of rows in a data frame.

Description

Uses random downsampling to fix the group sizes to the smallest group in the data frame.

Wraps balance().

Usage

downsample(data, cat_col, id_col = NULL, id_method = "n_ids")

Arguments

data Data frame.

cat_col Name of categorical variable to balance by. (Character)

id_col Name of factor with IDs. (Character)
IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the id_method.
E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.

id_method Method for balancing the IDs. (Character)
n_ids, n_rows_c, distributed, or nested.

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.

n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.

nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

downsample 9

Details

Without id_col: Downsampling is done without replacement, meaning that rows are not dupli-
cated but only removed.

With id_col: See id_method description.

Value

Data frame with some rows removed. Ordered by cat_col and (potentially) id_col.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other sampling functions: balance, upsample

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using downsample()
downsample(df, cat_col="diagnosis")

Using downsample() with id_method "n_ids"
With column specifying added rows
downsample(df, cat_col="diagnosis",

id_col="participant", id_method="n_ids")

Using downsample() with id_method "n_rows_c"
With column specifying added rows
downsample(df, cat_col="diagnosis",

id_col="participant", id_method="n_rows_c")

Using downsample() with id_method "distributed"
downsample(df, cat_col="diagnosis",

id_col="participant",
id_method="distributed")

Using downsample() with id_method "nested"
downsample(df, cat_col="diagnosis",

id_col="participant",

10 find_missing_starts

id_method="nested")

find_missing_starts Find start positions that cannot be found in data.

Description

Tells you which values and (optionally) skip_to numbers that are recursively removed when using
the l_starts method with remove_missing_starts set to TRUE.

Usage

find_missing_starts(data, n, starts_col = NULL,
return_skip_numbers = TRUE)

Arguments

data Data frame or Vector

n List of starting positions.

Skip values by c(value, skip_to_number) where skip_to_number is the nth ap-
pearance of the value in the vector.

See group_factor for explanations and examples of using the l_starts method.

starts_col Name of column with values to match when data is a data frame. Pass ’index’
to use row names. (Character)

return_skip_numbers

Return skip_to numbers along with values (Logical).

Value

List of start values and skip_to numbers or vector of the start values. Returns NULL if no values
found.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: differs_from_previous, find_starts, group_factor, group

find_starts 11

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame('a' = c('a','a','b',

'b','c','c'))

Create list of starts
starts <- c("a", "e", "b", "d", "c")

Find missing starts with skip_to numbers
find_missing_starts(df, starts, starts_col = 'a')

Find missing starts without skip_to numbers
find_missing_starts(df, starts, starts_col = 'a',

return_skip_numbers = FALSE)

find_starts Find start positions of groups in data.

Description

Finds values or indices of values that are not the same as the previous value.

E.g. to use with the l_starts method.

Wraps differs_from_previous().

Usage

find_starts(data, col = NULL, return_index = FALSE,
factor_conversion_warning = TRUE)

Arguments

data Data frame or Vector
N.B. If checking a factor, it is converted to a character vector. Conversion will
generate a warning, which can be turned off by setting factor_conversion_warning
to FALSE.

col Name of column to find starts in. Used when data is data frame. (Character)

return_index Return indices of starts. (Logical)
factor_conversion_warning

Generate warning when converting factor to character. (Logical)

Value

Vector with either start values or indices of start values.

12 find_starts

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other l_starts tools: differs_from_previous, find_missing_starts, group_factor, group

Examples

Attach packages
library(groupdata2)

Create a data frame
df <- data.frame('a' = c('a','a','b',

'b','c','c'))

Get start values for new groups in column 'a'
find_starts(df, col = 'a')

Get indices of start values for new groups
in column 'a'
find_starts(df, col = 'a',

return_index = TRUE)

Use found starts with l_starts method
Notice: This is equivalent to n = 'auto'
with l_starts method

Get start values for new groups in column 'a'
starts <- find_starts(df, col = 'a')

Use starts in group() with 'l_starts' method
group(df, n = starts, method = 'l_starts',

starts_col = 'a')

Similar but with indices instead of values

Get indices of start values for new groups
in column 'a'
starts_ind <- find_starts(df, col = 'a',

return_index = TRUE)

Use starts in group() with 'l_starts' method
group(df, n = starts_ind, method = 'l_starts',

starts_col = 'index')

fold 13

fold Create balanced folds for cross-validation.

Description

Divides data into groups by a range of methods. Balances a given categorical variable and/or nu-
merical variable between folds and keeps (if possible) all data points with a shared ID (e.g. partici-
pant_id) in the same fold. Can create multiple unique fold columns for repeated cross-validation.

Usage

fold(data, k = 5, cat_col = NULL, num_col = NULL, id_col = NULL,
method = "n_dist", id_aggregation_fn = sum,
extreme_pairing_levels = 1, num_fold_cols = 1,
unique_fold_cols_only = TRUE, max_iters = 5,
handle_existing_fold_cols = "keep_warn", parallel = FALSE)

Arguments

data Data frame or vector.

k Dependent on method.
Number of folds (default), fold size, with more (see method).
Given as whole number or percentage (0 < n < 1).

cat_col Name of categorical variable to balance between folds.
E.g. when predicting a binary variable (a or b), we usually want both classes
represented in every fold.
N.B. If also passing an id_col, cat_col should be constant within each ID.

num_col Name of numerical variable to balance between folds.
N.B. When used with id_col, values for each ID are aggregated using id_aggregation_fn
before being balanced.
N.B. When passing num_col, the method parameter is ignored.

id_col Name of factor with IDs. This will be used to keep all rows that share an ID in
the same fold (if possible).
E.g. If we have measured a participant multiple times and want to see the effect
of time, we want to have all observations of this participant in the same fold.

method n_dist, n_fill, n_last, n_rand, greedy, or staircase.
Notice: examples are sizes of the generated groups based on a vector with 57
elements.

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
n is number of groups

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
n is number of groups

14 fold

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
n is number of groups
n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (only 1 per group) (e.g.12, 11, 11, 11, 12).
n is number of groups
greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
n is group size
staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
n is step size

id_aggregation_fn

Function for aggregating values in num_col for each ID, before balancing num_col.
N.B. Only used when num_col and id_col are both specified.

extreme_pairing_levels

How many levels of extreme pairing to do when balancing folds by a numerical
column (i.e. num_col is specified).
Extreme pairing: Rows/pairs are ordered as smallest, largest, second smallest,
second largest, etc. If extreme_pairing_levels > 1, this is done "recursively"
on the extreme pairs. See "Details/num_col" for more.
N.B. Larger values work best with large datasets. If set too high, the result
might not be stochastic. Always check if an increase actually makes the folds
more balanced. See example.

num_fold_cols Number of fold columns to create. Useful for repeated cross-validation.
If num_fold_cols > 1, columns will be named ”.folds1”, ”.folds2”, etc. Oth-
erwise simply ”.folds”.
N.B. If unique_fold_cols_only is TRUE, we can end up with fewer columns
than specified, see max_iters.
N.B. If data has existing fold columns, see handle_existing_fold_cols.

unique_fold_cols_only

Check if fold columns are identical and keep only unique columns.
As the number of column comparisons can be time consuming, we can run this
part in parallel. See parallel.
N.B. We can end up with fewer columns than specified in num_fold_cols, see
max_iters.
N.B. Only used when num_fold_cols > 1 or data has existing fold columns.

max_iters Maximum number of attempts at reaching num_fold_cols unique fold columns.
When only keeping unique fold columns, we risk having fewer columns than ex-
pected. Hence, we repeatedly create the missing columns and remove those that
are not unique. This is done until we have num_fold_cols unique fold columns
or we have attempted max_iters times. In some cases, it is not possible to cre-
ate num_fold_cols unique combinations of the dataset, e.g. when specifying
cat_col, id_col and num_col. max_iters specifies when to stop trying. Note
that we can end up with fewer columns than specified in num_fold_cols.
N.B. Only used num_fold_cols > 1.

fold 15

handle_existing_fold_cols

How to handle existing fold columns. Either "keep_warn", "keep", or "remove".
To add extra fold columns, use "keep" or "keep_warn". Note that existing fold
columns might be renamed.
To replace the existing fold columns, use "remove".

parallel Whether to parallelize the fold column comparisons, when unique_fold_cols_only
is TRUE.
Requires a registered parallel backend. Like doParallel::registerDoParallel.

Details

cat_col:
1. Data is subset by cat_col.
2. Subsets are grouped and merged.

id_col:
1. Groups are created from unique IDs.

num_col:
1. Rows are shuffled.

Note that this will only affect rows with the same value in num_col.
2. Extreme pairing 1: Rows are ordered as smallest, largest, second smallest, second largest,

etc. Each pair get a group identifier.
3. If extreme_pairing_levels > 1: The group identifiers are reordered as smallest, largest,

second smallest, second largest, etc., by the sum of num_col in the represented rows. These
pairs (of pairs) get a new set of group identifiers, and the process is repeated extreme_pairing_levels-2
times. Note that the group identifiers at the last level will represent 2^extreme_pairing_levels
rows, why you should be careful when choosing that setting.

4. The final group identifiers are folded, and the fold identifiers are transferred to the rows.

N.B. When doing extreme pairing of an unequal number of rows, the row with the smallest value
is placed in a group by itself, and the order is instead: smallest, second smallest, largest, third
smallest, second largest, etc.

cat_col AND id_col:
1. Data is subset by cat_col.
2. Groups are created from unique IDs in each subset.
3. Subsets are merged.

cat_col AND num_col:
1. Data is subset by cat_col.
2. Subsets are grouped by num_col.
3. Subsets are merged such that the largest group (by sum of num_col) from the first category

is merged with the smallest group from the second category, etc.

num_col AND id_col:
1. Values in num_col are aggregated for each ID, using id_aggregation_fn.

16 fold

2. The IDs are grouped, using the aggregated values as "num_col".
3. The groups of the IDs are transferred to the rows.

cat_col AND num_col AND id_col:
1. Values in num_col are aggregated for each ID, using id_aggregation_fn.
2. IDs are subset by cat_col.
3. The IDs in each subset are grouped, by using the aggregated values as "num_col".
4. The subsets are merged such that the largest group (by sum of the aggregated values) from

the first category is merged with the smallest group from the second category, etc.
5. The groups of the IDs are transferred to the rows.

Value

Data frame with grouping factor for subsetting in cross-validation.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

partition for balanced partitions

Other grouping functions: all_groups_identical, group_factor, group, partition, splt

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(
"participant" = factor(rep(c('1','2', '3', '4', '5', '6'), 3)),
"age" = rep(sample(c(1:100), 6), 3),
"diagnosis" = rep(c('a', 'b', 'a', 'a', 'b', 'b'), 3),
"score" = sample(c(1:100), 3*6))
df <- df %>% arrange(participant)
df$session <- rep(c('1','2', '3'), 6)

Using fold()

Without balancing
df_folded <- fold(df, 3, method = 'n_dist')

With cat_col
df_folded <- fold(df, 3, cat_col = 'diagnosis',
method = 'n_dist')

With id_col
df_folded <- fold(df, 3, id_col = 'participant',

group 17

method = 'n_dist')

With num_col
Note: 'method' would not be used in this case
df_folded <- fold(df, 3, num_col = 'score')

With cat_col and id_col
df_folded <- fold(df, 3, cat_col = 'diagnosis',
id_col = 'participant', method = 'n_dist')

With cat_col, id_col and num_col
df_folded <- fold(df, 3, cat_col = 'diagnosis',
id_col = 'participant', num_col = 'score')

Order by folds
df_folded <- df_folded %>% arrange(.folds)

Multiple fold columns
Useful for repeated cross-validation
Note: Consider running in parallel
df_folded <- fold(df, 3, cat_col = 'diagnosis',
id_col = 'participant', num_fold_cols = 5,
unique_fold_cols_only=TRUE,
max_iters=4)

Check if additional extreme_pairing_levels
improve the numerical balance
set.seed(2) # try with seed 1 as well
df_folded_1 <- fold(df, 3, num_col = 'score',

extreme_pairing_levels = 1)
df_folded_1 %>%

dplyr::group_by(.folds) %>%
dplyr::summarise(sum_score = sum(score),

mean_score = mean(score))

set.seed(2) # try with seed 1 as well
df_folded_2 <- fold(df, 3, num_col = 'score',

extreme_pairing_levels = 2)
df_folded_2 %>%

dplyr::group_by(.folds) %>%
dplyr::summarise(sum_score = sum(score),

mean_score = mean(score))

group Create groups from your data.

Description

Divides data into groups by a range of methods. Creates a grouping factor with 1s for group 1, 2s
for group 2, etc. Returns a data frame grouped by the grouping factor for easy use in %>% pipelines.

18 group

Usage

group(data, n, method = "n_dist", starts_col = NULL,
force_equal = FALSE, allow_zero = FALSE, return_factor = FALSE,
descending = FALSE, randomize = FALSE, col_name = ".groups",
remove_missing_starts = FALSE)

Arguments

data Data frame or vector.

n Dependent on method.
Number of groups (default), group size, list of group sizes, list of group starts,
step size or prime number to start at. See method.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method l_starts allows 'auto'.

method greedy, n_dist, n_fill, n_last, n_rand, l_sizes, l_starts, staircase, or
primes.
Notice: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
n is group size

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
n is number of groups

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
n is number of groups

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
n is number of groups

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (only 1 per group) (e.g.12, 11, 11, 11, 12).
n is number of groups

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end. (e.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29)).
n is a list of group sizes

l_starts: Starts new groups at specified values of vector.
n is a list of starting positions. Skip values by c(value, skip_to_number) where
skip_to_number is the nth appearance of the value in the vector. Groups auto-
matically start from first data point.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found with find_starts().

group 19

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
n is step size

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
n is the prime number to start at

starts_col Name of column with values to match in method l_starts when data is a data
frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

allow_zero Whether n can be passed as 0. (Logical)

return_factor Return only grouping factor. (Logical)

descending Change direction of method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor (Logical)

col_name Name of added grouping factor
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method l_starts only. (Logical)

Value

Data frame grouped by new grouping factor

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical, fold, group_factor, partition, splt

Other staircase tools: %primes%, %staircase%, group_factor

Other l_starts tools: differs_from_previous, find_missing_starts, find_starts, group_factor

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame("x"=c(1:12),
"species" = rep(c('cat','pig', 'human'), 4),
"age" = sample(c(1:100), 12))

Using group()
df_grouped <- group(df, 5, method = 'n_dist')

20 groupdata2

Using group() with dplyr pipeline to get mean age
df_means <- df %>%
group(5, method = 'n_dist') %>%
dplyr::summarise(mean_age = mean(age))

Using group_factor() with l_starts
"c('pig',2)" skips to the second appearance of
"pig" after the first appearance of "cat"
df_grouped <- group(df,

list('cat', c('pig',2), 'human'),
method = 'l_starts',
starts_col = 'species')

groupdata2 groupdata2: A package for creating groups from data

Description

Methods for dividing data into groups. Create balanced partitions and cross-validation folds. Per-
form time series windowing and general grouping and splitting of data. Balance existing groups
with up- and downsampling.

Details

The groupdata2 package provides six main functions: group, group_factor, splt, partition,
fold, and balance.

group

Create groups from your data.

Divides data into groups by a range of methods. Creates a grouping factor with 1s for group 1, 2s
for group 2, etc. Returns a data frame grouped by the grouping factor for easy use in dplyr pipelines.

Go to group

group_factor

Create grouping factor for subsetting your data.

Divides data into groups by a range of methods. Creates and returns a grouping factor with 1s for
group 1, 2s for group 2, etc.

Go to group_factor

splt

Split data by a range of methods.

Divides data into groups by a range of methods. Splits data by these groups.

Go to splt

group_factor 21

partition

Create balanced partitions (e.g. training/test sets).

Splits data into partitions. Balances a given categorical variable between partitions and keeps (if
possible) all data points with a shared ID (e.g. participant_id) in the same partition.

Go to partition

fold

Create balanced folds for cross-validation.

Divides data into groups (folds) by a range of methods. Balances a given categorical variable
between folds and keeps (if possible) all data points with the same ID (e.g. participant_id) in the
same fold.

Go to fold

balance

Balance the sizes of your groups with up- and downsampling.

Uses up- and/or downsampling to fix the group sizes to the min, max, mean, or median group size
or to a specific number of rows. Has a range of methods for balancing on ID level.

Go to balance

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

group_factor Create grouping factor for subsetting your data.

Description

Divides data into groups by a range of methods. Creates and returns a grouping factor with 1s for
group 1, 2s for group 2, etc.

Usage

group_factor(data, n, method = "n_dist", starts_col = NULL,
force_equal = FALSE, allow_zero = FALSE, descending = FALSE,
randomize = FALSE, remove_missing_starts = FALSE)

22 group_factor

Arguments

data Data frame or vector.

n Dependent on method.
Number of groups (default), group size, list of group sizes, list of group starts,
step size or prime number to start at. See method.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method l_starts allows 'auto'.

method greedy, n_dist, n_fill, n_last, n_rand, l_sizes, l_starts, staircase, or
primes.
Notice: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
n is group size

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
n is number of groups

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
n is number of groups

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
n is number of groups

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (only 1 per group) (e.g.12, 11, 11, 11, 12).
n is number of groups

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end. (e.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29)).
n is a list of group sizes

l_starts: Starts new groups at specified values of vector.
n is a list of starting positions. Skip values by c(value, skip_to_number) where
skip_to_number is the nth appearance of the value in the vector. Groups auto-
matically start from first data point.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found with find_starts().

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
n is step size

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
n is the prime number to start at

group_factor 23

starts_col Name of column with values to match in method l_starts when data is a data
frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

allow_zero Whether n can be passed as 0. (Logical)

descending Change direction of method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor (Logical)
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method l_starts only. (Logical)

Value

Grouping factor with 1s for group 1, 2s for group 2, etc.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical, fold, group, partition, splt

Other staircase tools: %primes%, %staircase%, group

Other l_starts tools: differs_from_previous, find_missing_starts, find_starts, group

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create a data frame
df <- data.frame("x"=c(1:12),
"species" = rep(c('cat','pig', 'human'), 4),
"age" = sample(c(1:100), 12))

Using group_factor() with n_dist
groups <- group_factor(df, 5, method = 'n_dist')
df$groups <- groups

Using group_factor() with greedy
groups <- group_factor(df, 5, method = 'greedy')
df$groups <- groups

Using group_factor() with l_sizes
groups <- group_factor(df, list(0.2, 0.3), method = 'l_sizes')
df$groups <- groups

Using group_factor() with l_starts

24 partition

groups <- group_factor(df, list('cat', c('pig',2), 'human'),
method = 'l_starts', starts_col = 'species')

df$groups <- groups

partition Create balanced partitions.

Description

Splits data into partitions. Balances a given categorical variable and/or numerical variable between
partitions and keeps (if possible) all data points with a shared ID (e.g. participant_id) in the same
partition.

Usage

partition(data, p = 0.2, cat_col = NULL, num_col = NULL,
id_col = NULL, id_aggregation_fn = sum, extreme_pairing_levels = 1,
force_equal = FALSE, list_out = TRUE)

Arguments

data Data frame or vector.

p List or vector of partition sizes. Given as whole number(s) and/or percentage(s)
(0 < n < 1). E.g. c(0.2, 3, 0.1).

cat_col Name of categorical variable to balance between partitions.
E.g. when training and testing a model for predicting a binary variable (a or b),
we usually want both classes represented in both the training set and the test set.
N.B. If also passing an id_col, cat_col should be constant within each ID.

num_col Name of numerical variable to balance between partitions.
N.B. When used with id_col, values in num_col for each ID are aggregated
using id_aggregation_fn before being balanced.

id_col Name of factor with IDs. Used to keep all rows that share an ID in the same
partition (if possible).
E.g. If we have measured a participant multiple times and want to see the effect
of time, we want to have all observations of this participant in the same partition.

id_aggregation_fn

Function for aggregating values in num_col for each ID, before balancing num_col.
N.B. Only used when num_col and id_col are both specified.

extreme_pairing_levels

How many levels of extreme pairing to do when balancing partitions by a nu-
merical column (i.e. num_col is specified).
Extreme pairing: Rows/pairs are ordered as smallest, largest, second smallest,
second largest, etc. If extreme_pairing_levels > 1, this is done "recursively"
on the extreme pairs. See "Details/num_col" for more.

partition 25

N.B. Larger values work best with large datasets. If set too high, the result might
not be stochastic. Always check if an increase actually makes the partitions more
balanced. See example.

force_equal Discard excess data. (Logical)

list_out Return partitions in a list. (Logical)

Details

cat_col:
1. Data is subset by cat_col.
2. Subsets are partitioned and merged.

id_col:
1. Partitions are created from unique IDs.

num_col:
1. Rows are shuffled.

Note that this will only affect rows with the same value in num_col.
2. Extreme pairing 1: Rows are ordered as smallest, largest, second smallest, second largest,

etc. Each pair get a group identifier.
3. If extreme_pairing_levels > 1: The group identifiers are reordered as smallest, largest,

second smallest, second largest, etc., by the sum of num_col in the represented rows. These
pairs (of pairs) get a new set of group identifiers, and the process is repeated extreme_pairing_levels-2
times. Note that the group identifiers at the last level will represent 2^extreme_pairing_levels
rows, why you should be careful when choosing that setting.

4. The final group identifiers are shuffled, and their order is applied to the full dataset.
5. The ordered dataset is split by the sizes in p.

N.B. When doing extreme pairing of an unequal number of rows, the row with the largest value
is placed in a group by itself, and the order is instead: smallest, second largest, second smallest,
third largest, ... , largest.

cat_col AND id_col:
1. Data is subset by cat_col.
2. Partitions are created from unique IDs in each subset.
3. Subsets are merged.

cat_col AND num_col:
1. Data is subset by cat_col.
2. Subsets are partitioned by num_col.
3. Subsets are merged.

num_col AND id_col:
1. Values in num_col are aggregated for each ID, using id_aggregation_fn.
2. The IDs are partitioned, using the aggregated values as "num_col".
3. The partition identifiers are transferred to the rows of the IDs.

26 partition

cat_col AND num_col AND id_col:
1. Values in num_col are aggregated for each ID, using id_aggregation_fn.
2. IDs are subset by cat_col.
3. The IDs for each subset are partitioned, by using the aggregated values as "num_col".
4. The partition identifiers are transferred to the rows of the IDs.

Value

If list_out is TRUE:

A list of partitions where partitions are data frames.

If list_out is FALSE:

A data frame with grouping factor for subsetting.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical, fold, group_factor, group, splt

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame(
"participant" = factor(rep(c('1','2', '3', '4', '5', '6'), 3)),
"age" = rep(sample(c(1:100), 6), 3),
"diagnosis" = rep(c('a', 'b', 'a', 'a', 'b', 'b'), 3),
"score" = sample(c(1:100), 3*6))

df <- df %>% arrange(participant)
df$session <- rep(c('1','2', '3'), 6)

Using partition()

Without balancing
partitions <- partition(df, c(0.2,0.3))

With cat_col
partitions <- partition(df, c(0.5), cat_col = 'diagnosis')

With id_col
partitions <- partition(df, c(0.5), id_col = 'participant')

With num_col
partitions <- partition(df, c(0.5), num_col = 'score')

splt 27

With cat_col and id_col
partitions <- partition(df, c(0.5), cat_col = 'diagnosis',

id_col = 'participant')

With cat_col, num_col and id_col
partitions <- partition(df, c(0.5), cat_col = 'diagnosis',

num_col = "score",
id_col = 'participant')

Return data frame with grouping factor
with list_out = FALSE
partitions <- partition(df, c(0.5), list_out = FALSE)

Check if additional extreme_pairing_levels
improve the numerical balance
set.seed(2) # try with seed 1 as well
partitions_1 <- partition(df, c(0.5), num_col = 'score',

extreme_pairing_levels = 1,
list_out = FALSE)

partitions_1 %>%
dplyr::group_by(.partitions) %>%
dplyr::summarise(sum_score = sum(score),

mean_score = mean(score))
set.seed(2) # try with seed 1 as well
partitions_2 <- partition(df, c(0.5), num_col = 'score',

extreme_pairing_levels = 2,
list_out = FALSE)

partitions_2 %>%
dplyr::group_by(.partitions) %>%
dplyr::summarise(sum_score = sum(score),

mean_score = mean(score))

splt Split data by a range of methods.

Description

Divides data into groups by a range of methods. Splits data by these groups.

Usage

splt(data, n, method = "n_dist", starts_col = NULL,
force_equal = FALSE, allow_zero = FALSE, descending = FALSE,
randomize = FALSE, remove_missing_starts = FALSE)

Arguments

data Data frame or vector.

28 splt

n Dependent on method.
Number of groups (default), group size, list of group sizes, list of group starts,
step size or prime number to start at. See method.
Passed as whole number(s) and/or percentage(s) (0 < n < 1) and/or character.
Method l_starts allows 'auto'.

method greedy, n_dist, n_fill, n_last, n_rand, l_sizes, l_starts, staircase, or
primes.
Notice: examples are sizes of the generated groups based on a vector with 57
elements.

greedy: Divides up the data greedily given a specified group size (e.g.10, 10, 10, 10, 10, 7).
n is group size

n_dist (default): Divides the data into a specified number of groups and
distributes excess data points across groups (e.g.11, 11, 12, 11, 12).
n is number of groups

n_fill: Divides the data into a specified number of groups and fills up groups
with excess data points from the beginning (e.g.12, 12, 11, 11, 11).
n is number of groups

n_last: Divides the data into a specified number of groups. It finds the most
equal group sizes possible, using all data points. Only the last group is able to
differ in size (e.g.11, 11, 11, 11, 13).
n is number of groups

n_rand: Divides the data into a specified number of groups. Excess data
points are placed randomly in groups (only 1 per group) (e.g.12, 11, 11, 11, 12).
n is number of groups

l_sizes: Divides up the data by a list of group sizes. Excess data points are
placed in an extra group at the end. (e.g.n = list(0.2, 0.3)outputsgroupswithsizes(11, 17, 29)).
n is a list of group sizes

l_starts: Starts new groups at specified values of vector.
n is a list of starting positions. Skip values by c(value, skip_to_number) where
skip_to_number is the nth appearance of the value in the vector. Groups auto-
matically start from first data point.
E.g.n = c(1, 3, 7, 25, 50)outputsgroupswithsizes(2, 4, 18, 25, 8).
To skip: givenvectorc(”a”, ”e”, ”o”, ”a”, ”e”, ”o”), n = list(”a”, ”e”, c(”o”, 2))outputsgroupswithsizes(1, 4, 1).

If passing n =′ auto′ the starting positions are automatically found with find_starts().

staircase: Uses step size to divide up the data. Group size increases with 1
step for every group, until there is no more data (e.g.5, 10, 15, 20, 7).
n is step size

primes: Uses prime numbers as group sizes. Group size increases to the next
prime number until there is no more data. (e.g.5, 7, 11, 13, 17, 4).
n is the prime number to start at

starts_col Name of column with values to match in method l_starts when data is a data
frame. Pass 'index' to use row names. (Character)

force_equal Create equal groups by discarding excess data points. Implementation varies
between methods. (Logical)

upsample 29

allow_zero Whether n can be passed as 0. (Logical)

descending Change direction of method. (Not fully implemented) (Logical)

randomize Randomize the grouping factor (Logical)
remove_missing_starts

Recursively remove elements from the list of starts that are not found. For
method l_starts only. (Logical)

Value

List of the split data

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

See Also

Other grouping functions: all_groups_identical, fold, group_factor, group, partition

Examples

Attach packages
library(groupdata2)
library(dplyr)

Create data frame
df <- data.frame("x"=c(1:12),
"species" = rep(c('cat','pig', 'human'), 4),
"age" = sample(c(1:100), 12))

Using splt()
df_list <- splt(df, 5, method = 'n_dist')

upsample Upsampling of rows in a data frame.

Description

Uses random upsampling to fix the group sizes to the largest group in the data frame.

Wraps balance().

Usage

upsample(data, cat_col, id_col = NULL, id_method = "n_ids",
mark_new_rows = FALSE, new_rows_col_name = ".new_row")

30 upsample

Arguments

data Data frame.

cat_col Name of categorical variable to balance by. (Character)

id_col Name of factor with IDs. (Character)
IDs are considered entities, e.g. allowing us to add or remove all rows for an ID.
How this is used is up to the id_method.
E.g. If we have measured a participant multiple times and want make sure that
we keep all these measurements. Then we would either remove/add all mea-
surements for the participant or leave in all measurements for the participant.

id_method Method for balancing the IDs. (Character)
n_ids, n_rows_c, distributed, or nested.

n_ids (default): Balances on ID level only. It makes sure there are the same
number of IDs for each category. This might lead to a different number of
rows between categories.

n_rows_c: Attempts to level the number of rows per category, while only
removing/adding entire IDs. This is done in 2 steps:
1. If a category needs to add all its rows one or more times, the data is re-

peated.
2. Iteratively, the ID with the number of rows closest to the lacking/excessive

number of rows is added/removed. This happens until adding/removing
the closest ID would lead to a size further from the target size than the
current size. If multiple IDs are closest, one is randomly sampled.

distributed: Distributes the lacking/excess rows equally between the IDs. If
the number to distribute can not be equally divided, some IDs will have 1 row
more/less than the others.

nested: Calls balance() on each category with IDs as cat_col.
I.e. if size is "min", IDs will have the size of the smallest ID in their category.

mark_new_rows Add column with 1s for added rows, and 0s for original rows. (Logical)
new_rows_col_name

Name of column marking new rows. Defaults to ".new_row".

Details

Without id_col: Upsampling is done with replacement for added rows, while the original data
remains intact.

With id_col: See id_method description.

Value

Data frame with added rows. Ordered by cat_col and (potentially) id_col.

Author(s)

Ludvig Renbo Olsen, <r-pkgs@ludvigolsen.dk>

%primes% 31

See Also

Other sampling functions: balance, downsample

Examples

Attach packages
library(groupdata2)

Create data frame
df <- data.frame(

"participant" = factor(c(1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5)),
"diagnosis" = factor(c(0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0)),
"trial" = c(1, 2, 1, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
"score" = sample(c(1:100), 13)

)

Using upsample()
upsample(df, cat_col="diagnosis")

Using upsample() with id_method "n_ids"
With column specifying added rows
upsample(df, cat_col="diagnosis",

id_col="participant", id_method="n_ids",
mark_new_rows = TRUE)

Using upsample() with id_method "n_rows_c"
With column specifying added rows
upsample(df, cat_col="diagnosis",

id_col="participant", id_method="n_rows_c",
mark_new_rows = TRUE)

Using upsample() with id_method "distributed"
With column specifying added rows
upsample(df, cat_col="diagnosis",

id_col="participant", id_method="distributed",
mark_new_rows = TRUE)

Using upsample() with id_method "nested"
With column specifying added rows
upsample(df, cat_col="diagnosis",

id_col="participant", id_method="nested",
mark_new_rows = TRUE)

%primes% Find remainder from primes method.

Description

When using the primes method, the last group might not have the size of the associated prime
number if there are not enough elements left. Use %primes% to find this remainder.

32 %staircase%

Usage

size %primes% start_at

Arguments

size Size to group (Integer)

start_at Prime to start at (Integer)

Value

Remainder (Integer). Returns 0 if the last group has the size of the associated prime number.

Author(s)

Ludvig Renbo Olsen, <mail@ludvigolsen.dk>

See Also

Other staircase tools: %staircase%, group_factor, group

Other remainder tools: %staircase%

Examples

Attach packages
library(groupdata2)

100 %primes% 2

%staircase% Find remainder from staircase method.

Description

When using the staircase method, the last group might not have the size of the second last group +
step size. Use %staircase% to find this remainder.

Usage

size %staircase% step_size

Arguments

size Size to staircase (Integer)

step_size Step size (Integer)

%staircase% 33

Value

Remainder (Integer). Returns 0 if the last group has the size of the second last group + step size.

Author(s)

Ludvig Renbo Olsen, <mail@ludvigolsen.dk>

See Also

Other staircase tools: %primes%, group_factor, group

Other remainder tools: %primes%

Examples

Attach packages
library(groupdata2)

100 %staircase% 2

Finding remainder with value 0
size = 150
for (step_size in c(1:30)){
if(size %staircase% step_size == 0){
print(step_size)

}}

Index

%>%, 17
%primes%, 19, 23, 31, 33
%staircase%, 19, 23, 32, 32

all_groups_identical, 2, 16, 19, 23, 26, 29

balance, 3, 8, 9, 21, 29, 31
binning (group), 17

create_balanced_groups (fold), 13

differs_from_previous, 6, 10–12, 19, 23
downsample, 5, 8, 31

find_missing_starts, 7, 10, 12, 19, 23
find_starts, 7, 10, 11, 18, 19, 22, 23, 28
fold, 2, 13, 19, 21, 23, 26, 29

group, 2, 7, 10, 12, 16, 17, 20, 23, 26, 29, 32,
33

group_factor, 2, 7, 10, 12, 16, 19, 20, 21, 26,
29, 32, 33

groupdata2, 20
groupdata2-package (groupdata2), 20

not_previous (differs_from_previous), 6

partition, 2, 16, 19, 21, 23, 24, 29
primes (%primes%), 31

split (group), 17
splt, 2, 16, 19, 20, 23, 26, 27
staircase (%staircase%), 32

upsample, 5, 9, 29

window (group), 17

34

	all_groups_identical
	balance
	differs_from_previous
	downsample
	find_missing_starts
	find_starts
	fold
	group
	groupdata2
	group_factor
	partition
	splt
	upsample
	%primes%
	%staircase%
	Index

