Package ‘lintr’

February 18, 2020

Title A 'Linter' for R Code
Version 2.0.1

URL https://github.com/jimhester/lintr

BugReports https://github.com/jimhester/lintr/issues

Description Checks adherence to a given style, syntax errors and possible
semantic issues. Supports on the fly checking of R code edited with 'RStudio IDE', 'Emacs’,
'Vim', 'Sublime Text' and 'Atom'.

Depends R (>=3.2)

Imports rex,
crayon,
codetools,
cyclocomp,
testthat (>=2.2.1),
digest,
rstudioapi (>= 0.2),
httr (>= 1.2.1),
jsonlite,
knitr,
stats,
utils,
xml2 (>= 1.0.0),
xmlparsedata (>= 1.0.3)

Suggests rmarkdown,
mockery

License MIT + file LICENSE

LazyData true

Encoding UTF-8

VignetteBuilder knitr

RoxygenNote 7.0.2

Collate 'T_and_F_symbol_linter.R’'
"utils.R’
'aaa.R’
'actions.R'
'addins.R’
'assignment_linter.R'

https://github.com/jimhester/lintr
https://github.com/jimhester/lintr/issues

2 R topics documented:

'cache.R’
'closed_curly_linter.R’
'commas_linter.R'
‘comment_linters.R'
'comments.R’
'cyclocomp_linter.R'
'declared_functions.R'
'object_name_linters.R'
'deprecated.R'
'equals_na_lintr.R'

'exclude.R’

'expect_lint.R'

'extract.R’
'extraction_operator_linter.R’
'function_left_parentheses.R'
'get_source_expressions.R'
'ids_with_token.R'
'implicit_integer_linter.R'
'infix_spaces_linter.R'
'line_length_linter.R'

lint.R’

'methods.R'

'namespace.R’
'no_tab_linter.R'
'object_usage_linter.R'
'open_curly_linter.R’'
'paren_brace_linter.R'
'path_linters.R’
'pipe_continuation_linter.R'
'semicolon_terminator_linter.R'
'seq_linter.R'

'settings.R’
'single_quotes_linter.R'
'spaces_inside_linter.R’'
'spaces_left_parentheses_linter.R'
'trailing_blank_lines_linter.R’
'trailing_whitespace_linter.R’'
'tree-utils.R'
'undesirable_function_linter.R'
'undesirable_operator_linter.R'
'unneeded_concatenation_linter.R'
'with_id.R'

'zzz.R'

R topics documented:

all_undesirable_functions e 3
checkstyle_output L 4
clear_cache e 4
default_linters e e 4
default_settings 5

exclude e e 5

all_undesirable_functions 3

expect_lint. 6
expect_lint_free 7
Et_SOUICE_EXPIESSIONS v v v v vttt et e e e e 7
ids_with_token L e 7
Lint . . . e e e e e 8
Lntr . . . e e e e e e e 9
lintr-deprecated L 9
Hnt_dir. e e 10
lint_file e 11
lint_package e e 11
parse_exclusions L e e e e 12
read_Settings L. e e e e e e e 13
T_and_F_symbol_linter. e 13
with_defaults e 16
Index 18

all_undesirable_functions
Default undesirable functions and operators

Description
Lists of function names and operators for undesirable_function_linter and undesirable_operator_linter.
There is a list for the default elements and another that contains all available elements. Use
with_defaults to produce a custom list.

Usage
all_undesirable_functions
default_undesirable_functions

all_undesirable_operators

default_undesirable_operators

Format

A named list of character strings.

4 default_linters

checkstyle_output Checkstyle Report for lint results

Description

Generate a report of the linting results using the Checkstyle XML format.

Usage
checkstyle_output(lints, filename = "lintr_results.xml")
Arguments
lints the linting results.
filename the name of the output report
clear_cache Clear the lintr cache
Description

Clear the lintr cache

Usage
clear_cache(file = NULL, path = NULL)

Arguments
file filename whose cache to clear. If you pass NULL, it will delete all of the caches.
path directory to store caches. Reads option ’lintr.cache_directory’ as the default.
Value

0 for success, 1 for failure, invisibly.

default_linters Default linters

Description

List of default linters for 1int. Use with_defaults to customize it.

Usage

default_linters

Format

An object of class 1ist of length 22.

http://checkstyle.sourceforge.net/

default_settings 5

default_settings Default lintr settings

Description

Default lintr settings

Usage

default_settings

Format

An object of class 1ist of length 9.

See Also

read_settings, default_linters

exclude Exclude lines or files from linting

Description

Exclude lines or files from linting

Usage
exclude(lints, exclusions = settings$exclusions, ...)
Arguments
lints that need to be filtered.
exclusions manually specified exclusions
additional arguments passed to parse_exclusions
Details

Exclusions can be specified in three different ways.

1. single line in the source file. default: # nolint
2. line range in the source file. default: # nolint start, # nolint end

3. exclusions parameter, a named list of the files and lines to exclude, or just the filenames if you
want to exclude the entire file.

6 expect_lint

expect_lint Lint expectation

Description

This is an expectation function to test that the lints produced by 1int satisfy a number of checks.

Usage
expect_lint(content, checks, ..., file = NULL)
Arguments
content a character vector for the file content to be linted, each vector element represent-
ing a line of text.
checks checks to be performed:
NULL check that no lints are returned.
single string or regex object check that the single lint returned has a matching
message.
named list check that the single lint returned has fields that match. Accepted
fields are the same as those taken by Lint.
list of named lists for each of the multiple lints returned, check that it matches
the checks in the corresponding named list (as described in the point above).
Named vectors are also accepted instead of named lists, but this is a compatibil-
ity feature that is not recommended for new code.
arguments passed to 1int, e.g. the linters or cache to use.
file if not NULL, read content from the specified file rather than from content.
Value

NULL, invisibly.

Examples

no expected lint
expect_lint("a”, NULL, trailing_blank_lines_linter)

one expected lint
expect_lint("a\n", "superfluous”, trailing_blank_lines_linter)
expect_lint("a\n", list(message="superfluous”, line_number=2), trailing_blank_lines_linter)

several expected lints
expect_lint("a\n\n", list("superfluous”, "superfluous”), trailing_blank_lines_linter)
expect_lint(

"a\n\n",

list(list(message="superfluous”, line_number=2), list(message="superfluous”, line_number=3)),

trailing_blank_lines_linter)

expect_lint_free 7

expect_lint_free Test that the package is lint free

Description
This function is a thin wrapper around lint_package that simply tests there are no lints in the pack-
age. It can be used to ensure that your tests fail if the package contains lints.

Usage

expect_lint_free(...)

Arguments

arguments passed to lint_package

get_source_expressions
Parsed sourced file from a filename

Description

This object is given as input to each linter

Usage

get_source_expressions(filename)

Arguments
filename the file to be parsed.
ids_with_token Get parsed IDs by token
Description

Gets the source IDs (row indices) corresponding to given token.

Usage

ids_with_token(source_file, value, fun = ‘==%)

with_id(source_file, id)

8 Lint

Arguments
source_file A list of source expressions, the result of a call to ‘get_source_expressions()°,
for the desired filename.
value Character. String correspondin to the token to search for. For example:
* "SYMBOL"
e "FUNCTION"
* "EQ_FORMALS"
o "g"
o ("
fun For additionaly flexibility, a function to search for in the ‘token‘ column of
‘parsed_content‘. Typically ‘=="° or ‘%in%°".
id Integer. The index corresponding to the desired row of ‘parsed_content".
Value

‘ids_with_token*‘: The indices of the ‘parsed_content‘ data frame entry of the list of source expres-
sions. Indices correspond to the *rows* where ‘fun‘ evaluates to ‘TRUE® for the ‘value‘ in the
token column.

‘with_id‘: A data frame corresponding to the row(s) specified in ‘id°.

Functions

e with_id: Return the row of the ‘parsed_content® entry of the ‘get_source_expressions()* ob-
ject. Typically used in conjunction with ‘ids_with_token‘ to iterate over rows containing de-
sired tokens.

Lint Create a Lint object

Description

Create a Lint object

Usage

Lint(
filename,
line_number = 1L,
column_number = 1L,

type = c("style”, "warning"”, "error"),
message = "",

line = "",

ranges = NULL,

linter = "

lintr 9

Arguments
filename path to the source file that was linted.
line_number line number where the lint occurred.

column_number column number where the lint occurred.

type type of lint.
message message used to describe the lint error
line code source where the lint occurred
ranges a list of ranges on the line that should be emphasized.
linter name of linter that created the Lint object.
lintr Lintr
Description

Checks adherence to a given style, syntax errors and possible semantic issues. Supports on the fly
checking of R code edited with Emacs, Vim and Sublime Text.

See Also

lint, lint_package, lint_dir, linters

lintr-deprecated Deprecated functions

Description
Functions that have been deprecated and replaced by newer ones. They will be removed in an
upcoming version of lintr and should thus not be used anymore.

Usage

absolute_paths_linter(source_file)
trailing_semicolons_linter(source_file)
snake_case_linter(source_file)
multiple_dots_linter(source_file)

Arguments

source_file returned by get_source_expressions

Functions

* absolute_paths_linter: checks that no absolute paths are used.

* trailing_semicolons_linter: check there are no trailing semicolons.
* snake_case_linter: check that objects are not in snake_case.

* multiple_dots_linter: check that objects do not have.multiple.dots.

10 lint_dir

lint_dir Lint a directory

Description

Apply one or more linters to all of the R files in a directory

Usage

lint_dir(
path = ".",
relative_path = TRUE,

exclusions = NULL,

pattern = rex::rex("."”, one_of ("Rr"), end),
parse_settings = TRUE
)
Arguments
path the path to the base directory, by default, it will be searched in the parent direc-

tories of the current directory.

relative_path if TRUE, file paths are printed using their path relative to the base directory. If
FALSE, use the full absolute path.

additional arguments passed to 1int, e.g. cache or linters.
exclusions exclusions for exclude, relative to the package path.
pattern pattern for files, by default it will take files with .R or .r extension.

parse_settings whether to try and parse the settings

Value

A list of lint objects.

Examples

Not run:
lint_dir()
lint_dir(
linters = list(semicolon_terminator_linter())
cache = TRUE,
exclusions = list("inst/doc/creating_linters.R"” = 1, "inst/example/bad.R")

)

End(Not run)

lint_file 11

lint_file Lint a file

Description

Apply one or more linters to a file and return the lints found.

Usage
lint(filename, linters = NULL, cache = FALSE, ..., parse_settings = TRUE)
Arguments
filename the given filename to lint.
linters a named list of linter functions to apply see linters for a full list of default and
available linters.
cache given a logical, toggle caching of lint results. If passed a character string, store

the cache in this directory.
additional arguments passed to exclude.

parse_settings whether to try and parse the settings

Value

A list of lint objects.

lint_package Lint a package

Description

Apply one or more linters to all of the R files in a package.

Usage

lint_package(

path = ".",

relative_path = TRUE,

exclusions = list("R/RcppExports.R")
)

Arguments
path the path to the base directory of the package, if NULL, it will be searched in the
parent directories of the current directory.

relative_path if TRUE, file paths are printed using their path relative to the base directory. If
FALSE, use the full absolute path.

additional arguments passed to lint, e.g. cache or linters.

exclusions exclusions for exclude, relative to the package path.

12 parse_exclusions

Value

A list of lint objects.

Examples

Not run:
lint_package()

lint_package(
linters = with_defaults(semicolon_linter = semicolon_terminator_linter())
cache = TRUE,
exclusions = list("inst/doc/creating_linters.R"” = 1, "inst/example/bad.R")

)

End(Not run)

parse_exclusions read a source file and parse all the excluded lines from it

Description

read a source file and parse all the excluded lines from it

Usage

parse_exclusions(
file,
exclude = settings$exclude,
exclude_start = settings$exclude_start,
exclude_end = settings$exclude_end

)
Arguments
file R source file
exclude regular expression used to mark lines to exclude

exclude_start regular expression used to mark the start of an excluded range

exclude_end regular expression used to mark the end of an excluded range

read_settings 13

read_settings Read lintr settings

Description
Lintr searches for settings for a given source file in the following order.

1. options defined as linter.setting.

2. linter_file in the same directory

3. linter_file in the project directory

4. linter_file in the user home directory

5. default_settings

Usage

read_settings(filename)

Arguments

filename source file to be linted

Details

The default linter_file name is . lintr but it can be changed with option lintr.linter_file. This
file is a dcf file, see read. dcf for details.

T_and_F_symbol_linter linters

Description

Available linters

Usage

T_and_F_symbol_linter(source_file)
assignment_linter(source_file)
closed_curly_linter(allow_single_line = FALSE)
commas_linter(source_file)
commented_code_linter(source_file)
todo_comment_linter(todo = c("todo”, "fixme"))

cyclocomp_linter(complexity_limit = 25)

14

object_name_linter(styles = "snake_case")
object_length_linter(length = 30L)
camel_case_linter(source_file)
equals_na_linter(source_file)
extraction_operator_linter(source_file)
function_left_parentheses_linter(source_file)
implicit_integer_linter(source_file)
infix_spaces_linter(source_file)
line_length_linter(length)
no_tab_linter(source_file)
object_usage_linter(source_file)
open_curly_linter(allow_single_line = FALSE)
paren_brace_linter(source_file)
absolute_path_linter(lax = TRUE)
nonportable_path_linter(lax = TRUE)

pipe_continuation_linter(source_file)

T_and_F_symbol_linter

semicolon_terminator_linter(semicolon = c(”compound”, "trailing"))

seq_linter(source_file)
single_quotes_linter(source_file)
spaces_inside_linter(source_file)
spaces_left_parentheses_linter(source_file)
trailing_blank_lines_linter(source_file)

trailing_whitespace_linter(source_file)

undesirable_function_linter(fun = default_undesirable_functions)

undesirable_operator_linter(op = default_undesirable_operators)

unneeded_concatenation_linter(source_file)

T_and_F_symbol_linter 15

Arguments

source_file returned by get_source_expressions

allow_single_line

todo

if true allow a open and closed curly pair on the same line.

Vector of strings that identify TODO comments.

complexity_limit

expressions with a cyclomatic complexity higher than this are linted, defaults to
25. See cyclocomp.

styles A subset of ‘CamelCase’, ‘camelCase’, ‘snake_case’, ‘dotted.case’, ‘lowercase’,
‘UPPERCASE’. A name should match at least one of these styles.

length the length cutoff to use for the given linter.

lax Less stringent linting, leading to fewer false positives.

semicolon A character vector defining which semicolons to report:

compound Semicolons that separate two statements on the same line.
trailing Semicolons following the last statement on the line.

fun Named character vector, where the names are the names of the undesirable func-
tions, and the values are the text for the alternative function to use (or NA).
op Named character vector, where the names are the names of the undesirable op-
erators, and the values are the text for the alternative operator to use (or NA).
Functions

T_and_F_symbol_linter: Avoid the symbols T and F (for TRUE and FALSE).
assignment_linter: checks that <-’ is always used for assignment

closed_curly_linter: check that closed curly braces should always be on their own line
unless they follow an else.

commas_linter: check that all commas are followed by spaces, but do not have spaces before
them.

commented_code_linter: Check that there is no commented code outside roxygen blocks
todo_comment_linter: Check that the source contains no TODO comments (case-insensitive).
cyclocomp_linter: Check for overly complicated expressions. See cyclocomp.
object_name_linter: Check that object names conform to a naming style.
object_length_linter: check that object names are not too long.

camel_case_linter: check that objects are not in camelCase.

equals_na_linter: that checks for x == NA

extraction_operator_linter: Check that the ‘[[‘ operator is used when extracting a single
element from an object, not ‘[(subsetting) nor ‘$* (interactive use).

function_left_parentheses_linter: check that all left parentheses in a function call do
not have spaces before them.

implicit_integer_linter: Check that integers are explicitly typed using the form 1L in-
stead of 1.

infix_spaces_linter: check that all infix operators have spaces around them.
line_length_linter: check the line length of both comments and code is less than length.

no_tab_linter: check that only spaces are used for indentation, not tabs.

16

with_defaults

object_usage_linter: checks that closures have the proper usage using checkUsage. Note
this runs eval on the code, so do not use with untrusted code.

open_curly_linter: check that opening curly braces are never on their own line and are
always followed by a newline.

paren_brace_linter: check that there is a space between right parenthesis and an opening
curly brace.

absolute_path_linter: Check that no absolute paths are used (e.g. "/var", "C:\System",
"~/docs").

nonportable_path_linter: Check that file.path() is used to construct safe and portable
paths.

pipe_continuation_linter: Check that each step in a pipeline is on a new line, or the entire
pipe fits on one line.

semicolon_terminator_linter: Check that no semicolons terminate statements.
seg_linter: check for 1:1ength(...), T:nrow(...), 1:ncol(...), T:NROW(...) and

1:NCOL(...) expressions. These often cause bugs when the right hand side is zero. It is
safer to use seq_len or seq_along instead.

single_quotes_linter: checks that only single quotes are used to delimit string constants.

spaces_inside_linter: check that parentheses and square brackets do not have spaces di-
rectly inside them.

spaces_left_parentheses_linter: check that all left parentheses have a space before them
unless they are in a function call.

trailing_blank_lines_linter: check there are no trailing blank lines.
trailing_whitespace_linter: check there are no trailing whitespace characters.

undesirable_function_linter: Report the use of undesirable functions, e.g. return,
options, or sapply and suggest an alternative.

\ N

undesirable_operator_linter: Report the use of undesirable operators, e.g. “:::" or
*<<-" and suggest an alternative.

unneeded_concatenation_linter: Check that the ¢ function is not used without arguments
nor with a single constant.

with_defaults Modify lintr defaults

Description

Make a new list based on lintr’s default linters, undesirable operators or functions. The result of
this function is meant to be passed to the ‘linters® argument of ‘lint(), or put in your configuration

file.

Usage

with_defaults(..., default = default_linters)

Arguments

arguments of elements to change. If unnamed, the argument is named. If the
named argument already exists in "default", it is replaced by the new element.
If it does not exist, it is added. If the value is NULL, the element is removed.

default list of elements to modify.

with_defaults 17

Value

A modified list of elements.

Examples

When using interatively you will usuaully pass the result onto ‘lint" or ‘lint_package()*
Not run:
lint("foo.R", linters = with_defaults(line_length_linter = line_length_linter(120)))

End(Not run)
the default linter list with a different line length cutoff
my_linters <- with_defaults(line_length_linter = line_length_linter(120))

omit the argument name if you are just using different arguments
my_linters <- with_defaults(default = my_linters,
object_name_linter("camelCase"))

remove assignment checks (with NULL), add absolute path checks

my_linters <- with_defaults(default = my_linters,
assignment_linter = NULL,
absolute_path_linter)

custom list of undesirable functions:
remove sapply (using NULL)

add cat (with a accompanying message),
add print (unnamed, i.e. with no accompanying message)
add return (as taken from all_undesirable_functions)

my_undesirable_functions <- with_defaults(default = default_undesirable_functions,
sapply=NULL, "cat"”="No cat allowed”, "print"”, all_undesirable_functions[["return”]])

Index

*Topic datasets
all_undesirable_functions, 3
default_linters, 4
default_settings, 5

absolute_path_linter
(T_and_F_symbol_linter), 13
absolute_paths_linter
(lintr-deprecated), 9
all_undesirable_functions, 3
all_undesirable_operators
(all_undesirable_functions), 3
assignment_linter
(T_and_F_symbol_linter), 13

camel_case_linter
(T_and_F_symbol_linter), 13

checkstyle_output, 4

checkUsage, 16

clear_cache, 4

closed_curly_linter
(T_and_F_symbol_linter), 13

commas_linter (T_and_F_symbol_linter),
13

commented_code_linter
(T_and_F_symbol_linter), 13

cyclocomp, 15

cyclocomp_linter
(T_and_F_symbol_linter), 13

default_linters, 4,5
default_settings,5, I3
default_undesirable_functions
(all_undesirable_functions), 3
default_undesirable_operators
(all_undesirable_functions), 3

equals_na_linter
(T_and_F_symbol_linter), 13

eval, /16

exclude, 5, 10, 11

expect_lint, 6

expect_lint_free, 7

extraction_operator_linter
(T_and_F_symbol_linter), 13

18

function_left_parentheses_linter
(T_and_F_symbol_linter), 13

get_source_expressions, 7,8, 9, 15

ids_with_token, 7

implicit_integer_linter
(T_and_F_symbol_linter), 13

infix_spaces_linter
(T_and_F_symbol_linter), 13

line_length_linter
(T_and_F_symbol_linter), 13

Lint, 6, 8

lint, 4,6, 9-11

lint (lint_file), 11

lint_dir, 9, 10

lint_file, 11

lint_package, 7, 9, 11

linters, 9, 11

linters (T_and_F_symbol_linter), 13

lintr, 9

lintr-deprecated, 9

multiple_dots_linter
(lintr-deprecated), 9

no_tab_linter (T_and_F_symbol_linter),
13

nonportable_path_linter
(T_and_F_symbol_linter), 13

object_length_linter
(T_and_F_symbol_linter), 13
object_name_linter
(T_and_F_symbol_linter), 13
object_usage_linter
(T_and_F_symbol_linter), 13
open_curly_linter
(T_and_F_symbol_linter), 13

paren_brace_linter
(T_and_F_symbol_linter), 13
parse_exclusions, 5, 12

INDEX

pipe_continuation_linter
(T_and_F_symbol_linter), 13

read.dcf, /3
read_settings, 5, 13

semicolon_terminator_linter
(T_and_F_symbol_linter), 13

seg_along, 16

seq_len, 16

seg_linter (T_and_F_symbol_linter), 13

single_quotes_linter
(T_and_F_symbol_linter), 13

snake_case_linter (lintr-deprecated), 9

spaces_inside_linter
(T_and_F_symbol_linter), 13

spaces_left_parentheses_linter
(T_and_F_symbol_linter), 13

T_and_F_symbol_linter, 13
todo_comment_linter
(T_and_F_symbol_linter), 13
trailing_blank_lines_linter
(T_and_F_symbol_linter), 13
trailing_semicolons_linter
(lintr-deprecated), 9
trailing_whitespace_linter
(T_and_F_symbol_linter), 13

undesirable_function_linter, 3
undesirable_function_linter
(T_and_F_symbol_linter), 13
undesirable_operator_linter, 3
undesirable_operator_linter
(T_and_F_symbol_linter), 13
unneeded_concatenation_linter
(T_and_F_symbol_linter), 13

with_defaults, 3, 4, 16
with_id (ids_with_token), 7

19

	all_undesirable_functions
	checkstyle_output
	clear_cache
	default_linters
	default_settings
	exclude
	expect_lint
	expect_lint_free
	get_source_expressions
	ids_with_token
	Lint
	lintr
	lintr-deprecated
	lint_dir
	lint_file
	lint_package
	parse_exclusions
	read_settings
	T_and_F_symbol_linter
	with_defaults
	Index

