Package ‘zenplots’

March 31, 2019

Version 0.0-4
Encoding UTF-8
Title Zigzag Expanded Navigation Plots

Description Graphical tools for visualizing high-dimensional data with a path
of pairs. Note that this requires 'graph’ from Bioconductor.
If you want to use dynamic graphics based on 'loon’, you also need to have
'loon’ installed, see <https://github.com/waddella/loon>.

Author Marius Hofert [aut, cre],
Wayne Oldford [aut]

Maintainer Marius Hofert <marius.hofert@uwaterloo.ca>

Depends R (>=3.4.0)

Imports grid, graphics, stats, methods, MASS, graph, PairViz

Suggests loon, knitr, rmarkdown, Rgraphviz, ADGofTest, copula, Matrix,
pcaPP, qqtest, qrmdata, qrmtools, rugarch, zoo, ggplot2,
lattice, gridExtra, scagnostics

Enhances

License GPL-2 | GPL-3

NeedsCompilation yes

VignetteBuilder knitr, rmarkdown

Repository CRAN

Date/Publication 2019-03-31 16:30:03 UTC

R topics documented:

EXITACT . . o vt e e e e e e e
happiness L e e e
OCCUPANCY .+« « v v v e e e e e e e e e e e e e e e e e e
Olive o e
plots_graphics

2 burst
plots_grid e e e e 13
plots_loon e e 17
plot_indices e e e e 22
plot_region 23
1745103 & T 24
WINE o o e e 25
zenpath oL e 26
Zenploto e 29

Index 42

burst Splitting an Input Object into a List of Columns

Description

Split a (numeric/logical/character) vector, matrix, data.frame or a list of such into a list of columns,
with corresponding group and variable information and labels.

Usage

burst(x, labs = 1list())

Arguments

X numeric vector, matrix, data.frame or, for burst(), a 1ist of such.

labs either NULL (in which case neither group nor variable labels are computed) or
a list containing the components group (either NULL, the group label basename
or labels for the groups), var (either NULL, the variable label basename or la-
bels for the variables), sep (the separator between group and variable labels)
and group2d (a logical indicating whether labels of group_2d_*() plots are
affected by group = NULL or still printed). If any of these components is not
given, it is set to the defaults as can be found in zenplot(). Note that if at least
one (group or variable) label is given in x, then those (original) labels will be
used.

Value

burst() returns a 1ist of length five, containing all columns of x (possibly with constructed group

and variable names), the group and variable numbers (indices), and the group and variable labels.

Author(s

)

Marius Hofert

de_elect 3

Examples

Unnamed list of (some named, some unnamed) valid components
A <- matrix(1:12, ncol = 3)

x <- list(A, 1:4, as.data.frame(A))

burst(x, labs = list(group = "G", var = "V", sep =", "))
burst(x) # the same defaults as above

burst(x, labs = list(sep = " ")) # only changing the separator

Note: - No group labels are given in 'x' and thus they are constructed
#it in the above call
#i#t - The variable names are only constructed if not given

burst(x, labs = list(group = ""))

burst(x, labs = list(group = NULL, group2d = TRUE)) # no group labels

Note: There's no effect of 'group2d = TRUE' visible here as

#it 'x' doesn't contain group labels

burst(x, labs = list(group = NULL)) # no group labels unless groups change
burst(x, labs = list(var = NULL)) # no variable labels

burst(x, labs = list(group = NULL, var = NULL)) # neither one

burst(x, labs = NULL) # similarly, without any labels at all

Named list
x <- list(mat = A, vec = 1:4, df = as.data.frame(A))

burst(x)
Note: - The given group labels are used
#it - The variable names are only constructed if not given

burst(x, labs = list(group = NULL, group2d = TRUE)) # no group labels
burst(x, labs = list(group = NULL)) # no group labels unless groups change
Note: Now the effect of 'group2d' is visible.

Partially named list

x <- list(mat = A, vec = 1:4, as.data.frame(A))

burst(x)

burst(x, labs = list(group = NULL, group2d = TRUE)) # no group labels

burst(x, labs = list(group = NULL)) # no group labels unless groups change

burst(x, labs = list(var = NULL)) # no variable labels

burst(x, labs = list(group = NULL, var = NULL)) # only group labels and only if groups change
burst(x, labs = NULL) # neither group nor variable labels

de_elect German Election Data from 2002 and 2005

Description

Data set consisting of 68 columns of data about the German elections 2002 and 2005.

Usage

data("de_elect")

4 de_elect

Format
A data. frame() with 68 columns:

District: electoral district

State: federal state (Bundesland)

Num.comm: number of communities

Area: area 2004-12-31 (in square km)

Pop: population 2004-12-31 (in 1000)

Men: men (in 1000)

Citizens: germans (in 1000)

Density: population density 2004-12-31 (in square km)

Pop.le.15: population younger than (or equal to) 15 years 2002-12-31 (in percent)
Pop.15.18: population between 15 and 18 years old 2002-12-31 (in percent)
Pop.18.25: population between 18 and 25 years old 2002-12-31 (in percent)
Pop.25.35: population between 25 and 35 years old 2002-12-31 (in percent)
Pop.35.60: population between 35 and 60 years old 2002-12-31 (in percent)
Pop.g.60: population older than 60 years 2002-12-31 (in percent)

Births: live births (per 1000)

Deaths: deaths (per 1000)

Move.in: moving there in 2003 (per 1000)

Move.out: moving away in 2003 (per 1000)

Increase: increase in population (per 1000)

Farms: number of farms in 2001 (per 1000)

Agriculture: agriculturally used land (in ha)

Mining: mining companies and processing trade 2002-09-30 (per 1000)
Mining.employees: employees in mining and processing trade 2002-09-30 (per 1000)
Apt.new: new apartments 2002 (per 1000)

Apt: apartments 2002-12-31 (per 1000)

Motorized: motor vehicles 2003-01-31 (per 1000)

School. finishers: school finishers 2002 (per 1000)

School.wo.2nd: without secondary school (ohne Hauptschule) 2002 (in percent)
School. 2nd: with secondary school (Hauptschule) 2002 (in percent)
School.Real: with graduation from Realschule 2002 (in percent)
School.UED: with university-entrance diploma (Gymnasium) 2002 (in percent)
Unemployment.®@3: unemployment 2003-12-31 (in percent)
Unemployment.@4: unemployment 2004-12-31 (in percent)

Employed: employed subject to social insurance contribution (per 1000)

FFF: farmers, foresters, fishermen (in percent)

de_elect 5

Industry: industry employees subject to social insurance contribution (in percent)

CTT: commerce, transportation and telecommunication employees subject to social insurance con-
tribution (in percent)

0S: other services (in percent)

Voters.@5: eligible voters 2005

Voters.02: eligible voters 2002

Votes.@5: number of votes 2005

Votes.@2: number of votes 2002

Invalid.®5: invalid votes 2005

Invalid.@2: invalid votes 2002

Valid.®@5: valid votes 2005

Valid.@2: valid votes 2002

Votes.SPD.@5: votes for SPD 2005

Votes.SPD.@2: votes for SPD 2002
Votes.CDU.CSU.05: votes for CDU/CSU 2005
Votes.CDU.CSU.02: votes for CDU/CSU 2002
Votes.Gruene.@5: votes for Gruene 2005
Votes.Gruene.@2: votes for Gruene 2002
Votes.FDP.@5: votes for FDP 2005

Votes.FDP.@2: votes for FDP 2002
Votes.Linke.®5: votes for Linke 2005
Votes.Linke.@2: votes for Linke 2002

SPD.@5: SPD 2005 (as a fraction in [0,1])
CDU.CSU.@5: CDU/CSU 2005 (as a fraction in [0,1])
Gruene.05: Gruene 2005 (as a fraction in [0,1])
FDP.@5: FDP 2005 (as a fraction in [0,1])
Linke.05: Linke 2005 (as a fraction in [0,1])
Others.@5: Other parties 2005 (as a fraction in [0,1])
SPD.©2: SPD 2002 (as a fraction in [0,1])
CDU.CSU.@2: CDU/CSU 2002 (as a fraction in [0,1])
Gruene.02: Gruene 2002 (as a fraction in [0,1])
FDP.@2: FDP 2002 (as a fraction in [0,1])
Linke.02: Linke 2002 (as a fraction in [0,1])
Others.02: other parties 2002 (as a fraction in [0,1])

Source

The data was obtained from http://www.bundeswahlleiter.de but is not available under this link
anymore. Furthermore, the first column of the original data set is ommitted as it only contained the
row numbers.

6 extract

Examples

data("de_elect”)

extract Extracting Information from Zen Arguments

Description

Aucxiliary functions to extract information from zargs for 1d and 2d (default) plots.

Usage

extract_1d(zargs)
extract_2d(zargs)

Arguments
zargs argument list as passed from zenplot (). This must at least contain x, orientations,
vars, num, 1im and labs (for extract_1d()) and x, vars, num, 1im and labs
(for extract_2d()); see zenplot() for an explanation of these variables.
Details

This is an auxiliary function used by the provided 1d and 2d plots. For performance reasons, no
checking of the input object is done.

Value

for extract_1d(): list with the data to be plotted in the 1d plot (x), a list with all columns of
x (xcols), the group numbers for each column of x (groups), the variable numbers for each
column of x (vars), the group labels for each column of x (glabs), the variable labels for
each column of x (vlabs), a logical indicating whether the plot is horizontal or vertical
(horizontal) and the axis limits (x1im).

for extract_2d(): list with the data to be plotted in the 2d plot (x and y), a list with all columns
of x (xcols), the group numbers for each column of x (groups), the variable numbers for each
column of x (vars), the group labels for each column of x (glabs), the variable labels for each
column of x (vlabs), the x-axis and y-axis limits (x1im and ylim) and a logical indicating
whether the x and y variables belong to the same group (same. group).

Author(s)

Marius Hofert

See Also

plots_graphics, plots_grid, plots_loon

happiness 7

Examples

Dummy example (mimicking how zargs are built internally)
set.seed(271)
n <- 100
x <= list(matrix(rnorm(n*2), ncol = 2), matrix(rnorm(n*3), ncol = 3))
n2dplots <- 5 - 1
pathLayout <- unfold(n2dplots)
path <- pathLayout$path
Layout <- pathLayout$layout
zargs2d <- list(x = x,
turns = path$turns,
orientations = Layout$orientations,
vars = Layout$vars,
lim = "individual”,
labs = list(group = "G", var = "V", sep =" "),
width1ld = 1,
width2d = 10,
num = 2,
ispace = 0)

Calling extract_2d()
str(extract_2d(zargs2d))

happiness World Happiness Data Set

Description

Data set consisting of 498 rows and 12 columns containing data from the World Happiness Report
over three years.

Usage

data("happiness")

Format
data.frame() with 12 columns:

Time: year of the World Happiness Report.
Region: region of the world.
Country: country.

Happiness: happiness score measured in the respective year (see Time) by asking “How would
you rate your happiness on a scale of 0 to 10 where 10 is happiest?”.

Rank: rank of the country based on Happiness.
GDP: extent to which the gross domestic product per capita contributed to the calculation of Happiness.

Family: extent to which family contributed to the calculation of Happiness.

8 occupancy

Health: extent to which life expectancy contributed to the calculation of Happiness.

Freedom: extent to which freedom contributed to the calculation of Happiness.

Corruption: extent to which the perception of corruption contributed to the calculation of Happiness.
Generosity: extent to which generosity contributed to the calculation of Happiness.

Dystopia: extent to which the dystopia residual contributed to the calculation of Happiness.
Dystopia is an imaginary country with the world’s least-happy people (which can act as a
benchmark against which all countries can be favorably compared).

Details

GDP, Family, Health, Freedom, Corruption and Generosity describe the extent to which these fac-
tors contribute in evaluating the happiness in each country. If added together with Dystopia, one
receives the happiness score.

Source

The data set was obtained from https://www.kaggle.com/unsdsn/world-happiness on 2018-
04-20 in three different .csv files (one for each year). Joint columns (variables) where then built, the
rows expanded (to be the same for each year) and sorted acorrding to Region and Country. Finally,
Time was added to obtain a single data set.

References

https://www.kaggle.com/unsdsn/world-happiness

Examples

data("happiness”)
stopifnot(all.equal (rowSums(happiness[,c("GDP", "Family", "Health", "Freedom”,
"Corruption”, "Generosity”,
"Dystopia”)1),
happiness[, "Happiness"], tol = 5e-5))

occupancy Tools for the Occupancy Matrix

Description

Convert an occupancy matrix to matrix with different symbols.

Usage

COﬂVGr‘t_OCCUpancy(X, to = C(””, n<n, n>n’ ”V", 11/\1'))

https://www.kaggle.com/unsdsn/world-happiness
https://www.kaggle.com/unsdsn/world-happiness

olive 9

Arguments
X an occupancy matrix consisting of the character "" (unoccupied), "1" (left),
"r" (right), "d" (down) or "u” (up) as returned by zenplot().
to a vector of symbols to which ""”, "1", "r", "d" and "u" should be mapped.
Value

matrix as the occupancy matrix but with entries replaced by those in to.

Author(s)

Marius Hofert

Examples

Generate some data

n <- 1000 # sample size

d <- 20 # dimension

set.seed(271) # set seed (for reproducibility)

x <= matrix(rnorm(n * d), ncol =d) # i.i.d. N(@,1) data

Extract the occupancy matrix from a zenplot
res <- zenplot(x)
(occ <- res[["path"]][["occupancy”11)

Convert the occupancy matrix
convert_occupancy(occ)

olive Olive Oil Data Set

Description

Data set consisting of 572 rows and 10 columns containing data about olive oil.

Usage

data("olive")

Format
A data. frame() with 10 columns:
area: (larger) area.
region: (local) region.

palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic: the fatty
acids measured.

10 plots_graphics

Source

The data set was obtained from the package pdfCluster (for convenience). It contains 572 rows of
observations. The first and the second column correspond to the area (Centre-North, South, Sar-
dinia) and the geographical region of origin of the olive oils (northern Apulia, southern Apulia,
Calabria, Sicily, inland Sardinia and coast Sardinia, eastern and western Liguria, Umbria), respec-
tively. The remaining columns represent the chemical measurements (on the acid components for
the oil specimens) palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic.

Examples

data("olive")

plots_graphics Graphics-Based Plotting Functions

Description

The 1d and 2d plotting functions based on the R package graphics.

Usage

rug_ld_graphics(zargs,
loc = 0.5, length = 0.5, width = 1, col = par("fg"),
add = FALSE, plot... = NULL, ...)
points_1d_graphics(zargs,
loc = 0.5, cex = 0.4,
add = FALSE, plot... = NULL, ...)
jitter_1d_graphics(zargs,
loc = 0.5, offset = 0.25, cex = 0.4,
add = FALSE, plot... = NULL, ...)
hist_1d_graphics(zargs,
breaks = NULL, length.out = 21, col = NULL,

plot... = NULL, ...)
density_1d_graphics(zargs,
density... = NULL, offset = 0.08,
add = FALSE, plot... = NULL, ...)

boxplot_1d_graphics(zargs,
cex = 0.4, range = NULL, axes = FALSE,
add = FALSE, ...)
arrow_1d_graphics(zargs,
loc = c(0.5, 0.5), angle = 60, length = 0.6,
add FALSE, plot... = NULL, ...)
rect_ld_graphics(zargs,
loc = c(0.5, 0.5), width = 1, height =1,
add = FALSE, plot... = NULL, ...)
lines_1d_graphics(zargs,
loc = c(0.5, 0.5), length =1,

plots_graphics 11

add = FALSE, plot... = NULL, ...)
label_1d_graphics(zargs,

loc = c(0.5, 0.5), label = NULL, box = FALSE,

add = FALSE, plot... = NULL, ...)
layout_1d_graphics(zargs, ...)

group_2d_graphics(zargs,
glabs = NULL, sep = "\n", loc = c(0.5, 0.5),
add = FALSE, plot... = NULL, ...)
points_2d_graphics(zargs,
cex = 0.4, box = FALSE,

add = FALSE, group... = NULL, plot... = NULL, ...)
gg_2d_graphics(zargs,
do.line = TRUE, lines... = NULL, cex = 0.4, box = FALSE,
add = FALSE, group... = NULL, plot... = NULL, ...)

density_2d_graphics(zargs,
ngrids = 25, drawlabels = FALSE,
axes = FALSE, box = FALSE,
add = FALSE, group... = NULL, ...)
axes_2d_graphics(zargs,
length = 0.1, eps = 0.04, code = 2, xpd = NA,
add = FALSE, group... = NULL, plot... = NULL, ...)
arrow_2d_graphics(zargs,
loc = c(0.5, 0.5), angle = 60, length
add = FALSE, group... = NULL, plot...
rect_2d_graphics(zargs,
loc = ¢c(0.5, 0.5), width = 1, height =1,
add = FALSE, group... = NULL, plot... = NULL, ...)
label_2d_graphics(zargs,
loc = ¢(0.98, 0.05), label = NULL, adj = 1:0, box = FALSE,

0.2,
NULL, ...)

add = FALSE, group... = NULL, plot... = NULL, ...)
layout_2d_graphics(zargs, ...)
Arguments

zargs argument list as passed from zenplot().

width width of the rugs/rectangle.

height height of the rugs/rectangle.

col color (of the rugs) or vector of colors (for the bars and bar components; see
barplot()).

add logical indicating whether the current plot should be added to (or on top of)
the previous one.

axes A logical indicating whether axes should be drawn.

cex character expansion factor.

offset number in [0, 0.5] determining how far away the plot stays from the plot margins

(for creating space between the two).

12

range

breaks

length.out

loc

angle
length
label
box

glabs

sep
do.line

lines...

ngrids

drawlabels
eps
code

xpd

adj
density...
group. ..
plot...

Details

plots_graphics

argument range of the underlying boxplot() (determines how far the plot
whiskers extend out of the box). If range = NULL, this will be automatically
determined depending on the sample size.

break points for the histogram as passed to the underlying hist (). If NULL, the
default is to use 20 equi-width bins covering the range of the data.

number of break points if is.null(breaks).

x-location or (x,y)-location (for 1d plots when viewed in the direction of the
path; for 2d plots when viewed in normal viewing direction) of the center of the
respective geometric shape or plot.

angle between the two edges of the arrow head.

length of the arrow in [0, 1] from tip to base.

label to be used (with default being the column names of the data if NULL).
logical indicating whether a box is drawn around the plot region.

group labels being indexed by the plot variables (thus need to be of length as the
number of plot variables); if NULL, they are determined with extract_2d() and
the underlying burst().

a separator character for the group labels.
logical indicating whether a Q-Q line is plotted.

list of additional arguments passed to the underlying lines() function for
drawing the Q-Q line through the empirical 0.25- and 0.75-quantiles.

number of grid points in each dimension (a scalar or an integer vector of length
two).

logical indicating whether the contours should be labeled.
distance by which the axes are moved away from the plot region.
integer code determining the kind of arrows to be drawn; see arrows.

logical or NA, determining the region with respect to which clipping takes
place; see par().

x (and optionally y) adjustment of the label.

list of additional arguments passed to the underlying density().
list() of additional arguments passed to group_2d_graphics().
list of additional arguments passed to the underlying plot ().

additional arguments passed to the underlying graphics functions.

These functions based on the R package graphics are provided as useful defaults for the arguments
plotid and plot2d of zenplot(), respectively. See zenplot() for how to use them, their source
code for how to adjust them or how to write your own plotl1d or plot2d. The main idea is that
zenplot() passes on the zargs arguments to the plotl1d or plot2d functions and the ellipsis
argument is used to pass down all other (mostly graphical) parameters (to both plot1d or plot2d).

Overlaying of different graphics functions might not always turn out nicely (e.g. arrows over a
boxplot; the latter creates problems concerning the spacing). For such tasks, it is recommended to
work with grid via pkg = "grid” in zenplot().

plots_grid

Value

(Mostly) invisible().

Author(s)

Marius Hofert and Wayne Oldford

See Also

zenplot () for how to use these functions.

Examples

Implementation of 1d functions (for plotld of zenplot())
rug_1ld_graphics
points_1d_graphics
jitter_1d_graphics
density_1d_graphics
boxplot_1d_graphics
hist_1d_graphics
arrow_1ld_graphics
rect_1d_graphics
lines_1d_graphics
label_1d_graphics
layout_1d_graphics

Implementation of 2d functions (for plot2d of zenplot())
group_2d_graphics

points_2d_graphics

gq_2d_graphics

density_2d_graphics

axes_2d_graphics

arrow_2d_graphics

rect_2d_graphics

label_2d_graphics

layout_2d_graphics

13

plots_grid Grid-Based Plotting Functions

Description

The 1d and 2d plotting functions based on the R package grid.

14 plots_grid

Usage

rug_ld_grid(zargs,
loc = 0.5, length = 0.5, width = 1e-3, col = par("fg"),
draw = FALSE, ...)
points_1d_grid(zargs,
loc = 0.5, pch = 21, size = 0.02,
draw = FALSE, ...)
jitter_1d_grid(zargs,
loc = 0.5, offset = 0.25, pch = 21, size = 0.02,
draw = FALSE, ...)
hist_1d_grid(zargs,
breaks = NULL, length.out = 21, col = NULL, fill = NULL,

draw = FALSE, ...)
density_1d_grid(zargs,
density... = NULL, offset = 0.08,
draw = FALSE, ...)

boxplot_1d_grid(zargs,
pch = 21, size = 0.02,
col = NULL, 1wd = 2, bpwidth = ©.5, range = NULL,
draw = FALSE, ...)
arrow_1d_grid(zargs,
loc = c(0.5, 0.5), angle = 60, length = 0.6,
draw = FALSE, ...)
rect_1d_grid(zargs,
loc = c(@0.5, 0.5), width = 1, height =1,
draw = FALSE, ...)
lines_1d_grid(zargs,
loc = c(0.5, 0.5), length = 1, arrow = NULL,
draw = FALSE, ...)
label_1d_grid(zargs,
loc = c(0.5, 0.5), label
box = FALSE, box.width =
draw = FALSE, ...)
layout_1d_grid(zargs, ...)

= NULL, cex = 0.66,
1, box.height

1
-

group_2d_grid(zargs,
glabs = NULL, sep = "\n", loc
draw = FALSE, ...)
points_2d_grid(zargs,
type = c("p”, "1", "0"), pch = NULL, size = 0.02,
box = FALSE, box.width = 1, box.height = 1,

c(0.5, 0.5),

group... = list(cex = 0.66), draw = FALSE, ...)
gq_2d_grid(zargs,
do.line = TRUE, lines... = NULL, pch = NULL, size = 0.02,
box = FALSE, box.width = 1, box.height =1,
group... = list(cex = 0.66), draw = FALSE, ...)

density_2d_grid(zargs,

plots_grid 15

ngrids = 25, ccol = NULL, clwd = 1, clty = 1,
box = FALSE, box.width = 1, box.height = 1,
group... = list(cex = 0.66), draw = FALSE, ...)
axes_2d_grid(zargs,
angle = 30, length = unit(0.05, "npc"), type = "open”, eps = 0.02,
group... = list(cex = 0.66), draw = FALSE, ...)
arrow_2d_grid(zargs,
loc = c(0.5, 0.5), angle = 60, length = 0.2,
group... = list(cex = 0.66), draw = FALSE, ...)
rect_2d_grid(zargs,
loc = c(0.5, 0.5), width = 1, height = 1,
group... = list(cex = 0.66), draw = FALSE, ...)
label_2d_grid(zargs,
loc = c(0.98, 0.05), label = NULL, cex
just = c("right”, "bottom"), rot = 0,
box = FALSE, box.width = 1, box.height = 1,

0.66,

group... = list(cex = cex), draw = FALSE, ...)
layout_2d_grid(zargs, ...)
Arguments

zargs argument list as passed from zenplot().

width width (passed on to the underlying grid functions).

height height (passed on to the underlying grid functions).

just justification (see rectGrob() and textGrob()).

col for
rug_1d_grid: color and fill color of the rectangels forming the rugs.
boxplot_1d_grid: color of the box, whiskers and points.
hist_1d_grid: color of the bins.

draw logical indicating whether graphics output is produced.

pch plot symbol.

size plot symbol size as passed to pointsGrob().

offset number in [0, 0.5] determining how far away the plot stays from the plot margins
(for creating space between the two).

lwd line width.

bpwidth width of the boxplot (in default.units).

range determines how far the plot whiskers extend out of the box. If range = NULL,
this will be automatically determined depending on the sample size.

breaks break points for the histogram as passed to the underlying hist(). If NULL, the
default is to use 20 equi-width bins covering the range of the data.

length.out number of break points if is.null (breaks)

fill fill color of the bins.

loc (x,y)-location of the center of the arrow.

16

arrow
label

rot

box
box.width
box.height

cex

glabs

sep
group. ..
do.line

lines...

ngrids

plots_grid

see linesGrob().

label to be used (with default being the column names of the data if NULL).
rotation of the label in degrees.

logical indicating whether a box is drawn around the plot region.

width of the box (if drawn).

height of the box (if drawn).

character expansion (aims for a useful default for grid but might not always
be suitable — for that one would need to know both the number of rows and
columns in the plot layout and yet this would still be affected by the size of the
plot window).

group labels being indexed by the plot variables (thus need to be of length as the
number of plot variables); if NULL, they are determined with extract_2d() and
the underlying burst().

a separator character for the group labels.
list of arguments passed to group_2d_grid() (or NULL).
logical indicating whether a Q-Q line is plotted.

list of additional arguments passed to the underlying lines() function for
drawing the Q-Q line through the empirical 0.25- and 0.75-quantiles.

number of grid points in each dimension (a scalar or an integer vector of length
two).

ccol, clwd, clty

angle
length
type
eps

density...

Details

colors (col), line widths (1wd) andline types (1ty) of the contour lines. These
can be single values or vectors (which are then recycled).

angle between the two edges of the arrow head.

length of the arrow in [0,1] from tip to base.

axis type.

distance by which the axes are moved away from the plot region.
list() of arguments for the underlying density().

additional (graphical) parameters passed to gpar ().

These functions based on the R package grid are provided as useful defaults for the arguments
plot1d and plot2d of zenplot(), respectively. See zenplot() for how to use them, their source
code for how to adjust them or how to write your own plotld or plot2d. The main idea is that
zenplot() passes on the zargs arguments to the plotld or plot2d functions and the ellipsis
argument is used to pass down all other (mostly graphical) parameters (to both plotid or plot2d;

via gpar()).

Value

(Mostly) the underlying grob via invisible().

plots_loon 17

Author(s)
Marius Hofert and Wayne Oldford

See Also

zenplot () for how to use these functions.

Examples

Implementation of 1d functions (for plotld of zenplot())
rug_ld_grid
points_1d_grid
jitter_1d_grid
density_1d_grid
boxplot_1d_grid
hist_1d_grid
arrow_1d_grid
rect_1d_grid
lines_1d_grid
label_1d_grid
layout_1d_grid

Implementation of 2d functions (for plot2d of zenplot())
group_2d_grid

points_2d_grid

qg_2d_grid

density_2d_grid

axes_2d_grid

arrow_2d_grid

rect_2d_grid

label_2d_grid

layout_2d_grid

plots_loon Loon-Based Plotting Functions

Description

The 1d and 2d plotting functions based on the R package loon.

Usage

rug_1d_loon(zargs, ...)

points_1d_loon(zargs,
linkingGroup = NULL, linkingKey = NULL,
showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, glyph = "ocircle”,
itemLabel = NULL, showItemLabels = TRUE,
parent = NULL, ...)

plots_loon

jitter_1d_loon(zargs,
linkingGroup = NULL, showLabels = FALSE,
showScales = FALSE, showGuides = FALSE,
glyph = "ocircle”, itemLabel = NULL,
showItemLabels = TRUE, parent = NULL, ...)
hist_1d_loon(zargs,
breaks = NULL, color = NULL, fill
showStackedColors = TRUE,
showBinHandle = FALSE, showlLabels = FALSE,
linkingGroup = NULL, showScales = FALSE,
showGuides = FALSE, parent = NULL, ...)
density_1d_loon(zargs,
density.args = list(), method = c("single”, "double”),
lwd = NULL, linewidth = NULL, color = NULL,

NULL,

fill = NULL, linecolor = NULL, linkingGroup = NULL,
showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, baseplot = NULL, parent = NULL, ...)

boxplot_1d_loon(zargs,
color = NULL, linecolor = NULL, lwd = 2,
range = NULL, showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, linkingGroup = NULL,
baseplot = NULL, parent, ...)
arrow_1d_loon(zargs,
loc = c(0.5, 0.5), length = 0.6, angle = NULL,
linkingGroup = NULL, showLabels = FALSE,
showScales = FALSE, showGuides = FALSE,
baseplot = NULL, parent = NULL, ...)
rect_1d_loon(zargs,
loc.x = NULL, loc.y = NULL, color = NULL,
fill = NULL, 1lwd = 1,
linkingGroup = NULL, showLabels = FALSE,
showScales = FALSE, showGuides = FALSE,
baseplot = NULL, parent = NULL, ...)
lines_1d_loon(zargs,
loc.x = NULL, loc.y = NULL,
color = NULL, 1wd =1,
linkingGroup = NULL,
showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, baseplot = NULL,
parent = NULL, ...)
label_1d_loon(zargs,
loc.x = NULL, loc.y = NULL, label = NULL,
rot = NULL, size = 8, box = FALSE, color = NULL,
linkingGroup = NULL, showlLabels = FALSE,
showScales = FALSE, showGuides = FALSE,
baseplot = NULL, parent = NULL, ...)
layout_1d_loon(zargs, ...)

plots_loon

group_2d_loon(zargs,

glabs = NULL, sep = "\n", size = 8, rot = 0,
baseplot = NULL, parent = NULL, ...)

points_2d_loon(zargs,

showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, linkingGroup = NULL,
linkingKey = NULL, glyph = "ocircle”,
itemLabel = NULL, showItemLabels = TRUE,
parent = NULL, group... = NULL, ...)

density_2d_loon(zargs, ngrids = 25,

ccol = NULL, color = NULL, clwd = NULL, lwd = NULL,
linewidth = 1, showLabels = FALSE,

showScales = FALSE, showGuides = FALSE,
linkingGroup = NULL,

baseplot = NULL, parent = NULL, group... = NULL,

axes_2d_loon(zargs,

angle = 30, length = 0.05, eps = 0.02,

linkingGroup = NULL, color = NULL, showLabels = FALSE,
showScales = FALSE, showGuides = FALSE,

baseplot = NULL, parent = NULL,

group... = NULL, ...)

arrow_2d_loon(zargs,

loc = rep(0.5, 2), length = 0.2, angle = 30,
linkingGroup = NULL, color = NULL,

showLabels = FALSE, showScales = FALSE,

showGuides = FALSE, baseplot = NULL, parent = NULL,
group... = NULL, ...)

rect_2d_loon(zargs, loc.x = NULL, loc.y = NULL, color = NULL,

fill = NULL, 1wd = 1, linkingGroup = NULL,
showLabels = FALSE, showScales = FALSE,
showGuides = FALSE, baseplot = NULL,
parent = NULL, group... = NULL, ...)

label_2d_loon(zargs,

loc = NULL, label = NULL, rot = @, size = 8,
box = FALSE, color = NULL,

linkingGroup = NULL, showLabels = FALSE,
showScales = FALSE, showGuides = FALSE,
baseplot = NULL, parent = NULL,

group... = NULL, ...)
layout_2d_loon(zargs, ...)
Arguments
zargs argument list as passed from zenplot().
linkingGroup string specifying the initial group of plots to be linked to this plot.
linkingKey list of IDs to link on.
showLabels logical determining whether axis labels are displayed.

)

19

20

showScales

showGuides

glyph

itemLabel
showItemLabels
parent
density.args

method

plots_loon

logical determining whether scales are displayed.
logical determining whether the background guidelines are displayed.

string determining the glyph type to be displayed for points, default is an open
circle: "ocircle".

vector of strings to serve as the item label.

logical determing whether item labels display on mouse hover.
tk parent for this loon plot widget.

list () of arguments for density().

type of density plot used (single or double; the latter being reflected).

1wd line width.

linewidth for
density_1d_loon: line width of outline for density polygons (highest priority).
density_2d_loon: line width used when both clwd and 1wd are NULL, value of

1 used otherwise.

linecolor for
density_1d_loon: colour used for the outline of the density.
boxplot_1d_loon: colour used for the lines to draw the boxplot.

color color.

fill fill color.

baseplot if non-null the base plot on which the plot should be layered.

range determines how far the plot whiskers extend out of the box. If range = NULL,
this will be automatically determined depending on the sample size.

breaks break points for the histogram as passed to the underlying hist(). If NULL, the
default is to use 20 equi-width bins covering the range of the data.

showStackedColors
logical determining whether to show the individual point colours stacked in the
histogram.

showBinHandle logical to show a handle to adjust bins.

loc location of the center of the arrow.

length length of the arrow head.

angle angle between the shaft and one of the edges of the arrow head.

loc.x, loc.y
label

rot

size

box

glabs

x- and y-location.

label to be used (with a useful default if NULL).

rotation of the label in degrees.

plot size.

logical indicating whether a box is drawn around the plot.

group labels being indexed by the plot variables (thus need to be of length as the
number of plot variables); if NULL, they are determined with extract_2d() and
the underlying burst ().

plots_loon 21

sep a separator character for the group labels.

group. .. list of arguments passed to group_2d_loon() (or NULL).

ngrids number of grid points in each dimension (a scalar or an integer vector of length
two).

ccol, clwd colors (ccol) and line widths (clwd) of the contour lines. These can be single

values or vectors (which are then recycled).
eps distance by which the axes are moved away from the plot region.

additional arguments passed to the underlying loon functions.

Details

These functions based on the R package loon are provided as useful choices for the arguments
plot1d and plot2d of zenplot(). See zenplot () how to use them, their source code for how to
adjust them, their source code for how to adjust them or how towrite your own plotid or plot2d.
The main idea is that zenplot () passes on the zargs arguments to the plot1d or plot2d functions
and the ellipsis argument is used to pass down all other (mostly graphical) parameters (to both
plot1d or plot2d).

Value

The path, layout and a loon object (returned invisibly).

Author(s)
Marius Hofert and Wayne Oldford

See Also

zenplot () for how to use these functions.

Examples

Implementation of 1d functions (for plotld of zenplot())
rug_1d_loon
points_1d_loon
jitter_1d_loon
density_1d_loon
boxplot_1d_loon
hist_1d_loon
arrow_1d_loon
rect_1d_loon
lines_1d_loon
label_1d_loon
layout_1d_loon

Implementation of 2d functions (for plot2d of zenplot())
group_2d_loon

points_2d_loon

density_2d_loon

axes_2d_loon

22 plot_indices

arrow_2d_loon
rect_2d_loon
label_2d_loon
layout_2d_loon

plot_indices Plot Indices of the Current Plot

Description

Determining the indices of the x and y variables of the current plot.

Usage

plot_indices(zargs)

Arguments
zargs argument list as passed from zenplot(). This must at least contain vars and
num; see zenplot () for an explanation of these variables.
Details

This is an auxiliary function useful, for example, when writing user-provided 1d and 2d plot func-
tions.

Value

A numeric(2) containing the indices of the x and y variables to be plotted in the current plot (the
plot with number num). If the current plot is a 2d plot, the same variable is used twice.

Author(s)

Marius Hofert

Examples

plot_indices # its definition

plot_region

23

plot_region Setting up Plot Region for Graphics Functions

Description

Auxiliary function for setting up the plot region of 1d and 2d graphics plots.

Usage

plot_region(xlim, ylim, plot... = NULL)
Arguments

x1im x-axis limits.

ylim y-axis limits.

plot... arguments passed to plot().
Details

This is an auxiliary function used by the provided graphics-related 1d and 2d plots.

Value

invisible().

Author(s)

Marius Hofert

See Also

plots_graphics

Examples

plot_region

24 vport

vport Viewport Constructing Function for Grid Functions

Description

Auxiliary function for constructing viewports for 1d and 2d (default) plots.

Usage

vport(ispace, xlim = NULL, ylim = NULL, x = NULL, y = NULL, ...)
Arguments

ispace inner space (in [0, 1]).

xlim x-axis limits; if NULL, the data limits are used.

ylim y-axis limits; if NULL, the data limits are used.

X x data (only used if is.null(x1im)); if NULL, @:1 is used.

y y data (only used if is.null(ylim)); if NULL, @:1 is used.

additional arguments passed to the underlying viewport().

Details

This is an auxiliary function used by the provided grid-related 1d and 2d plots.

Value

A viewport.

Author(s)

Marius Hofert

See Also

plots_grid

Examples

vport

wine 25

wine Wine Data Set

Description

Data set consisting of 178 rows and 27 columns containing data about wine from the Piedmont
region of Italy.

Usage

data("wine")

Format
data.frame() with 27 columns:

wine: wine name (categorical variable with levels Barbera, Barolo, Grignolino).
alcohol: alcohol percentage (numeric).

sugar: sugar-free extract (numeric).

acidity: fixed acidity (numeric).

tartaric: tartaric acid (numeric).

malic: malic acid (numeric).

uronic: uronic acids (numeric).

pH: pH (numeric).

ash: ash (numeric).

alcal_ash: alcalinity of ash (numeric).
potassium: potassium (numeric).

calcium: calcium (numeric).

magnesium: magnesium (numeric).

phosphate: phosphate (numeric).

cloride: chloride (numeric).

phenols: total phenols (numeric).

flavanoids: flavanoids (numeric).
nonflavanoids: nonflavanoid phenols (numeric).
proanthocyanins: proanthocyanins (numeric).
colour: colour intensity (numeric).

hue: hue (numeric).

OD_dw: ODagy/O D315 of diluted wines (numeric).
0D_f1: ODasgy/ODs315 of flavanoids (numeric).
glycerol: glycerol (numeric).

butanediol: 2,3-butanediol (numeric).
nitrogen: total nitrogen (numeric).

proline: proline (numeric).

methanol: methanol (numeric).

26 zenpath

Source

The data set was obtained from the R\ package sn (for convenience). It represent chemical measure-
ments on each of 178 wine specimens belonging to three types of wine produced in the Piedmont
region of Italy. The data set includes all variables listed by Forina et al. (1986) with the exception
of ‘Sulphate’. The first variable is categorial, all others are numeric.

Forina, M., Lanteri, S. Armanino, C., Casolino, C., Casale, M. and Oliveri, P. v-PARVUS 2008: an
extendible package of programs for esplorative data analysis, classification and regression analysis.
Dip. Chimica e Tecnologie Farmaceutiche ed Alimentari, Universita di Genova, Italia. Web-site
(not accessible as of 2014): ‘http://www.parvus.unige.it’

References
Forina M., Armanino C., Castino M. and Ubigli M. (1986). Multivariate data analysis as a discrim-
inating method of the origin of wines. Vitis 25, 189-201.

Examples

data("wine"”

zenpath Constructing Zenpaths and Related Tools

Description

Constructing zenpaths and tools for extracting, connecting and displaying pairs, as well as, grouping
and indexing data structures.

Usage

zenpath(x, pairs = NULL,

method = c("front.loaded”, "back.loaded”, "balanced"”,
"eulerian.cross”, "greedy.weighted”, "strictly.weighted"),

decreasing = TRUE)

extract_pairs(x, n)

connect_pairs(x, duplicate.rm = FALSE)

graph_pairs(x, var.names = NULL)

groupData(x, indices, byrow = FALSE)

indexData(x, indices)

Arguments

X for
zenpath(): for method
"front.loaded": single integer.
"back.loaded": as for method = "front.loaded".
"balanced"”: as for method = "front.loaded".

zenpath

pairs

method

decreasing

duplicate.rm
var.names

indices

byrow

27

"eulerian.cross"”: two integers representing the group sizes.
"greedy.weighted”: numeric weight vector (or matrix or distance ma-
trix).
"strictly.weighted”: as for method = "greedy.weighted”.
extract_pairs(): the path, a vector or list of indices of the variables to be
plotted.
connect_pairs(): two-column matrix ora list containing vectors of length
two representing the pairs to be connected.
graph_pairs(): matrix or list of pairs along a zenpath. Can also be a list
containing vectors of length larger than two (then being interpreted as con-
nected pairs).
groupData(): matrix (or an object convertible to such via as.matrix()).
indexData(): matrix or data. frame (most useful for the latter).
two-column matrix containing (row-wise) the pairs of connected variables to be
sorted according to the weights. pairs is only used for methods greedy.weighted,
strictly.weighted and can be NULL in which case a default is constructed in
lexicographical order.

character string indicating the sorting method to be used. Available are:

"front.loaded": sort all pairs such that the first variables appear the most
frequently early in the sequence.

"back.loaded"”: sort all pairs such that the later variables appear the most fre-
quently later in the sequence.

"balanced”: sort all pairs such that all variables appear in balanced blocks
throughout the sequence (a Hamiltonian Decomposition).

"eulerian.cross"”: generate a sequence of pairs such that each is formed with
one variable from each group.

"greedy.weighted”: sort all pairs according to a greedy (heuristic) Euler path
visiting each edge precisely once.

"strictly.weighted”: this method strictly respects the order given by the
weights, so the first, second, third, etc. adjacent pair of numbers of the
output of zenpath() corresponds to the pair with largest, second-largest,
third-largest, etc. weight.

logical indicating whether the sorting is done according to increasing or de-
creasing weights.

vector of length two giving the number of pairs to extract from the path x (if
NULL, all pairs are returned (nothing extracted); if of length one, it is replicated).
The first number corresponds to the beginning of the path, the second to the end;
at least one of the two numbers should be >= 1.

logical indicating whether equal pairs (up to permutation) are omitted.

names of the variables appearing in x.

groupData(): list of vectors of indices according to which x is grouped.
indexData(): vector of column indices of x (typically obtained from zenpath()).

logical indicating whether the grouping is done by row (byrow = TRUE) or by
column (byrow = FALSE).

28 zenpath

Value

zenpath() returns a sequence of variables (indices or names, possibly a list of such), which can
then be used to index the data (via groupData()) for plotting via zenplot().

extract_pairs() returns an object of the same type as the input x but (possibly) shortened. It
extracts the first/last so-many pairs of x.

connect_pairs() returns a 1ist of (possibly connected) pairs, so a list of vectors of length at least
2.

groupData() returns a 1ist of (grouped) matrices. This is then typically passed on to zenplot().

indexData() returns an object as x (typically a data.frame or matrix) containing x indexed by
indices.

Author(s)
Marius Hofert and Wayne Oldford

See Also

zenplot () which provides the zenplot.

Examples

A baby example to see how groupData() works

A <- matrix(1:12, ncol = 3)

Ist <- list(1, list(2:3))

groupData(A, indices = lst) # split the matrix according to the grouping given by lst

Some calls of zenpath()

zenpath(10) # integer argument

Note that the result is of length 50 > 10 choose 2 as the underlying graph has to
be even (and thus edges are added here)

(zp <- zenpath(c(3, 5), method = "eulerian.cross”)) # integer(2) argument

Extract the first and last three pairs of indices
extract_pairs(zp, n = 3)

A more sophisticated example

nVars <- 5 # number of variables

set.seed(271)

x <= runif(nVarsx(nVars-1)/2) # weights

Construct the pairs

pairs <- expand.grid(1:nVars, 1:nVars)[,2:1]

pairs <- pairs[pairs[,1] < pairs[,2],]

pairs <- matrix(unlist(pairs), ncol = ncol(pairs))
stopifnot(length(x) == nrow(pairs)) # sanity check

Manually compute the result of method = "strictly.weighted” and group the pairs
1) Sort pairs according to the weights x and plot the variables
w <- order(x, decreasing = TRUE)

(pairs. <- pairs[w,])

library(graph)

plot(graph_pairs(pairs.)) # depict all pairs (edge = pair)

zenplot 29

2) Now go through the rows and determine the sequence of adjacent pairs
#it which can be plotted with a zenplot
res <- list(c(5,3,1),

c(3,2,5),
c(4,1,5),
c(1,2),
c(5,4,3),
c(2,4))
Call zenpath() and check whether we get the same
(zp <- connect_pairs(zenpath(x, pairs = pairs, method = "strictly.weighted”)))

stopifnot(identical(zp, lapply(res, as.integer)))

Extract the first and last three pairs of indices
(ezp <- extract_pairs(zp, n = 3))

Another example based on a matrix of (trivial) weights

This also shows that an input matrix 'x' does not have to
be symmetric. In that case, the lower triangular matrix is used.

d<-10
x <- matrix(1, nrow = d, ncol = d)
k <=1

for(j in 1:(d-1)) {
for(i in (j+1):d) {
x[i,j] <- k
k <= k+1

Compute the 'strictly.weighted' zenpath (all pairs sorted in decreasing order)
k <- 10 # bottom and top number of pairs (k most extreme pairs)
zpath <- zenpath(x, method = "strictly.weighted”) # compute path over all pairs (decreasing weights)
stopifnot(sapply(1:length(zpath), function(i) x[zpath[[i]1[1], zpath[[i]]1[21]) ==
45:1) # check
zpath <- connect_pairs(zpath) # connect the pairs
zp <- extract_pairs(zpath, n = c(3, @)) # grab out the top three pairs

zenplot Zigzag Expanded Navigation Plots

Description

Construct and draw a zigzag expanded navigation plot for a graphical exploratory analysis of a path
of variables.

Usage

unfold(nfaces, turns = NULL,
n2dcols = c("letter”, "square”, "A4", "golden”, "legal"),
method = c("tidy"”, "double.zigzag", "single.zigzag"”, "rectangular”),

30 zenplot

firstld = TRUE, lastld = TRUE, widthld = 1, width2d = 10)
zenplot(x, turns = NULL, firstld = TRUE, lastld = TRUE,
n2dcols = c("letter”, "square”, "A4", "golden", "legal”),
n2dplots = NULL,
plot1ld = c("label”, "points"”, "jitter"”, "density"”, "boxplot", "hist”,
"rug", "arrow”, "rect”, "lines"”, "layout"),
plot2d = c("points”, "density”, "axes"”, "label"”, "arrow”, "rect”, "layout"),
zargs = c(x = TRUE, turns = TRUE, orientations = TRUE,
vars = TRUE, num = TRUE, lim = TRUE, labs = TRUE,
width1ld = TRUE, width2d = TRUE,
]

ispace = match.arg(pkg) != "graphics"),
lim = c¢("individual”, "groupwise", "global"),
labs = list(group = "G", var = "V", sep = ", ", group2d = FALSE),

pkg = c("graphics”, "grid”, "loon"),

method = c("tidy"”, "double.zigzag", "single.zigzag"”, "rectangular”),
widthld = if(is.null(plotid)) 0.5 else 1, width2d = 10,

ospace = if(pkg == "loon") 0@ else 0.02,

ispace = if(pkg == "graphics”) 0 else 0.037,

draw = TRUE, ...)

Arguments

nfaces number of faces of the hypercube to unfold.

X data object, typically a vector, matrix, data. frame, ora list of such. In case
of a list, the components of x are interpreted as groups of data which are visually
separated by a two-dimensional (group) plot.

turns character vector (of length two times the number of variables to be plotted
minus 1) consisting of "d”, "u”, "r" or "1" indicating the turns out of the current
plot position; if NULL, the turns are constructed (if x is of the form described
before).

n2dcols number of columns of 2d plots (> 1) or one of "letter”, "square”, "A4",
"golden"” or "legal” in which case a similar layout is constructed. Note that
n2dcols is ignored if !is.null(turns).

n2dplots number of 2d plots.

plotid function returning a one-dimensional plot constructed with package pkg. Al-
ternatively, a character string of an existing function. For the defaults pro-
vided, the corresponding functions are obtained when appending _1d_graphics,
_1d_grid or _1d_loon depending on which pkg is used. Another feature is
plot1d = NULL in which case no plot is constructed.

plot2d function returning a two-dimensional plot constructed with package pkg. Al-
ternatively, a character string of an existing function. For the defaults pro-
vided, the corresponding functions are obtained when appending _2d_graphics,
_2d_gridor _2d_loon depending on which pkg is used. As for plot1d, plot2d
allows for plot2d = NULL.

firstid logical indicating whether the first one-dimensional plot is included.

last1d logical indicating whether the last one-dimensional plot is included.

zenplot 31

zargs fully named logical vector indicating whether the respective arguments are
(possibly) passed to plot1d() and plot2d() (if the latter contain the formal
argument zargs, which they typically do/should, but see below for an example
in which they do not). zargs can maximally contain all variables as given in the
default. If one of those variables does not appear in zargs, it is treated as TRUE
and the corresponding arguments are passed on to plot1d and plot2d. If one
of them is set to FALSE, the argument is not passed on.

lim (x-/y-)axis limits. This can be a character string or anumeric(2). If 1im = "groupwise”
and x does not contain groups, the behavior is equivalent to 1im = "global”.
labs plot labels to be used; see the argument labs of burst() for the exact specifi-

cation. Can, in general, be anything as long as plot1d and plot2d know how
to deal with it.
pkg R package used for plotting (depends on how the functions plotid and plot2d
were constructed; the user is responsible for choosing the appropriate package
among the supported ones).
method type of zigzag plot (a character). Available are:
tidy: more tidied-up double.zigzag (slightly more compact placement of plots
towards the end).
double.zigzag: zigzag plot in the form of a flipped “S”. Along this path, the
plots are placed in the form of an “S” which is rotated counterclockwise by
90 degrees.
single.zigzag: zigzag plot in the form of a flipped “S”.
rectangular: plots that fill the page from left to right and top to bottom. This
is useful (and most compact) for plots that do not share an axis.

Note that method is ignored if turns are provided.

width1d graphical parameter > 0 giving the width of 1d plots.
width2d graphical parameter > 0 giving the width of 2d plots.
ospace vector being repeated to have length four giving the (bottom, left, top, right)

outer space between the device region and the inner plot region in [0, 1] around
the zenplot.

ispace vector being repeated to have length four giving the (bottom, left, top, right)
inner space between the figure region and the plot region in [0, 1].

draw logical indicating whether a plot is created.

additional arguments passed to both plot1d and plot2d. If you need to pass
certain arguments only to one of them, say, plot2d, consider providing your
own plot2d; see the examples below.

Value

unfold() returns a 1ist consisting of the path (itself a 1ist containing turns (a character vector
with elements in “1”, “r”, “d”, “u”), positions (a 2-column matrix of (x,y)-indices in the occupancy
matrix) and the occupancy matrix itself (a matrix with elements in 0—4 where O stands for “not
occupied” and 1-4 encode “1”, “r”, “d”, “u”)) and details about the layout (another 1ist).

zenplot () (besides plotting) invisibly returns a list containing the path and layout. For pkg = "grid”,
the whole plot as a grob (grid object) is returned additionally. For pkg = "loon", the whole plot
as a loon object and the toplevel tk object is returned additionally.

32 zenplot

Author(s)
Marius Hofert and Wayne Oldford

See Also

All provided default plot1d and plot2d functions, see plots_graphics, plots_grid, plots_loon.

extract_1d() and extract_2d() for how zargs can be split up into a list of columns and corre-
sponding group and variable information.

burst() for how x can be split up into all sorts of information useful for plotting (see our default
plot1d and plot2d).

vport() for how to construct a viewport for (our default) grid (plot1d and plot2d) functions.
extract_pairs(), connect_pairs(), group() and zenpath() for (zen)path-related functions.

The various vignettes for additional examples.

Examples

#i## Basics #HHHHHHEHAHHEHAHHBHAHHBHRHHBHAAHBHAAHBHRAHAHHAHAARAHAHAHAAHAER A

Generate some data

n <- 1000 # sample size

d <- 20 # dimension

set.seed(271) # set seed (for reproducibility)

x <= matrix(rnorm(n * d), ncol =d) # i.i.d. N(@,1) data

A basic zenplot

res <- zenplot(x)

stopifnot(identical(res, unfold(nfaces =d - 1)))

=> The return value of zenplot() is the underlying unfold()

Some missing data

z <- X

z[seqg_len(n-10), 5] <- NA # all NA except 10 points
zenplot(z)

Another column with fully missing data (use arrows)
Note: This could be more 'compactified', but is technically

more involved
z[, 61 <= NA # all NA
zenplot(z)

Lists of vectors, matrices and data frames as arguments (=> groups of data)
Only two vectors

z <= list(x[,1], x[,2])

zenplot(z)

A matrix and a vector
z <- list(x[,1:21, x[,31)
zenplot(z)

A matrix, NA column and a vector

zenplot 33

z <- list(x[,1:2], NA, x[,3])

zenplot(z)

z <- list(x[,1:2]1, cbind(NA, NA), x[,31)
zenplot(z)

z <- list(x[,1:2], 1:10, x[,31)
zenplot(z)

Without labels or with different labels

z <= list(A = x[,1:2], B = cbind(NA, NA), C = x[,31)

zenplot(z, labs = NULL) # without any labels

zenplot(z, labs = list(group = NULL, group2d = TRUE)) # without group labels
zenplot(z, labs = list(group = NULL)) # without group labels unless groups change
zenplot(z, labs = list(var = NULL)) # without variable labels

zenplot(z, labs = list(var = "Variable ", sep = " - ")) # change default labels

Example with a factor

zenplot(iris)
zenplot(iris, lim = "global”) # global scaling of axis
zenplot(iris, lim = "groupwise”) # acts as 'global' here (no groups in the data)

More sophisticated examples #HHHHHHHHHHHHRHHHHHRHHRHHRHAREHHEHEHAEHHEEHE

Note: The third component (data.frame) naturally has default labels.
#i# zenplot() uses these labels and prepends a default group label.
z <- list(x[,1:51, x[1:10, 6:7]1, NA,
data.frame(x[seq_len(round(n/5)), 8:191), cbind(NA, NA), x[1:10, 20])

zenplot(z, labs = list(group = "Group ")) # change the group label (var and sep are defaults)
Alternatively, give z labels
names(z) <- paste("Group”, LETTERS[seq_len(length(z))1) # give group names
zenplot(z) # uses given group names
Now let's change the variable labels
z. <- lapply(z, function(z.) {

if(lis.matrix(z.)) z. <- as.matrix(z.)

colnames(z.) <- paste("Var.", seg_len(ncol(z.)))

z.
D
zenplot(z.)

A dynamic plot based on 'loon' (if installed and R compiled with tcl support)

if(requireNamespace("loon”, quietly = TRUE))
zenplot(x, pkg = "loon")

Providing your own turns #HHHHHHHHHHBHAHHHBHHHAHARARRREREAHAHEHERHARE A

A basic example
tUrnS <_ C("]_”,"d",”d",”r‘","I"",”d",”d","r‘“,"r",”u","u","I"”,”r",”u","U”,"]_","]_",
VCARIYUINCS NS AIYURRIVUINCS WS LN U IS NS L U U L

zenplot

"d",td", e e, d", d")
zenplot(x, plotld = "layout”, plot2d = "layout”, turns
=> The tiles stick together as ispace = 0.
zenplot(x, plotld = "layout”, plot2d = "layout”, turns = turns,
pkg = "grid") # layout of plot regions with grid
=> Here the tiles show the small (default) ispace

turns) # layout of plot regions

Another example (with own turns and groups)
zenplot(list(x[,1:3], x[,4:71), plotld = "arrow”, plot2d = "rect”,
tul"nS = C(Hdll’ Ilrll’ llr.II’ Ilrll’ Hrll, lldll’
"d", "1", "1", "1", "1", "1"), lastld = FALSE)

##H# Providing your own plot1d() or plot2d() HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHAHAH

Creating a box
zenplot(x, plotld = "label”, plot2d = function(zargs)
density_2d_graphics(zargs, box = TRUE))

With grid

zenplot(x, plotld = "label”, plot2d = function(zargs)
density_2d_grid(zargs, box = TRUE), pkg = "grid")

An example with width1d = width2d and where no zargs are passed on.
Note: This could have also been done with 'rect_2d_graphics(zargs, col = ...)"'
#i# as plotild and plot2d.
myrect <- function(...) {
plot(NA, type = "n", ann = FALSE, axes = FALSE, xlim = @:1, ylim = 0:1)
rect(xleft = @, ybottom = @, xright =1, ytop =1, ...)
3
zenplot(matrix(@, ncol = 15),
n2dcol = "square”, widthld = 10, width2d = 10,
plotid = function(...) myrect(col = "royalblue3"),
plot2d = function(...) myrect(col = "maroon3"))

Colorized rugs as plot1d()

basecol <- c("royalblue3”, "darkorange2”, "maroon3")

palette <- colorRampPalette(basecol, space = "Lab")

cols <- palette(d) # different color for each 1d plot

zenplot(x, plotld = function(zargs)
rug_1d_graphics(zargs, col = cols[(zargs$num+1)/2]))

With grid
library(grid) # for gTree() and glList()

zenplot(x, pkg = "grid"”, # you are responsible for choosing the right pkg (cannot be tested!)

plot1d = function(zargs)
rug_ld_grid(zargs, col = cols[(zargs$num+1)/21))

Rectangles with labels as plot2d() (shows how to overlay plots)

zenplot

With graphics
Note: myplot2d() could be written directly in a simpler way, but is
#it based on the two functions here to show how they can be combined.
zenplot(x, plotld = "arrow”, plot2d = function(zargs) {
rect_2d_graphics(zargs)
label_2d_graphics(zargs, add = TRUE)
»

With grid

zenplot(x, pkg = "grid"”, plotld = "arrow”, plot2d = function(zargs)
gTree(children = glist(rect_2d_grid(zargs),
label_2d_grid(zargs))))

Rectangles with labels outside the 2d plotting region as plot2d()
With graphics
zenplot(x, plotld = "arrow”, plot2d = function(zargs) {
rect_2d_graphics(zargs)
label_2d_graphics(zargs, add = TRUE, xpd = NA, srt = 90,
loc = ¢(1.04, 0), adj = c(0,1), cex = 0.7)
»

With grid

zenplot(x, pkg = "grid"”, plotld = "arrow”, plot2d = function(zargs)
gTree(children = glist(rect_2d_grid(zargs),
label_2d_grid(zargs, loc = c(1.04, 0),
just = c("left”, "top"),
rot = 90, cex = 0.45))))

2d density with points, 1d arrows and labels
zenplot(x, plotld = function(zargs) {
rect_1d_graphics(zargs)
arrow_1d_graphics(zargs, add = TRUE, loc = c(0.2, 0.5))
label_1d_graphics(zargs, add = TRUE, loc = c(0.8, 0.5))
}, plot2d = function(zargs) {
points_2d_graphics(zargs, col = adjustcolor(”black”, alpha.f = 0.4))
density_2d_graphics(zargs, add = TRUE)

b

2d density with labels, 1d histogram with density and label
Note: The 1d plots are ximproper* overlays here as the density

#it plot does not know the heights of the histogram. In other
#i# words, both histograms and densities use the whole 1d plot
#it region but are not correct relative to each other in the
#it sense of covering the same are. For a *proper* overlay

#i# see below.

zenplot(x, plotld = function(zargs) {
hist_1d_graphics(zargs)
density_1d_graphics(zargs, add = TRUE, border = "royalblue3”, lwd = 1.4)
label_1d_graphics(zargs, add = TRUE, loc = c(0.2, 0.8), cex = 0.6, font = 2,

35

36

zenplot

col = "darkorange2")
}, plot2d = function(zargs) {
density_2d_graphics(zargs)
points_2d_graphics(zargs, add = TRUE,
col = adjustcolor(”black”, alpha.f = 0.3))
»

More sophisticated examples #i#HHHH#HHHHHHEHHHEHEHHHHHEHHHEHHHEHEHHHEHEHEREEEAE
Example: Overlaying histgrams with densities (the *proper* way)

Define proper 1d plot for overlaying histograms with densities
hist_with_density_1d <- function(zargs)
{
Extract information and data
num <- zargs$num # plot number (among all 1d and 2d plots)
turn.out <- zargs$turns[num] # turn out of current position
horizontal <- turn.out == "d" || turn.out == "u"
ii <- plot_indices(zargs) # the indices of the 'x' variable to be displayed in the current plot
label <- paste@("V", ii[1]) # label
srt <- if(horizontal) @ else if(turn.out == "r") -90 else 90 # label rotation
x <- zargs$x[,ii[1]1] # data
lim <- range(x) # data limits
Compute histogram information
breaks <- seq(from = 1lim[1], to = 1im[2], length.out = 21)
binInfo <- hist(x, breaks = breaks, plot = FALSE)
binBoundaries <- binInfo$breaks
widths <- diff(binBoundaries)
heights <- binInfo$density
Compute density information
dens <- density(x)
xvals <- dens$x
keepers <- (min(x) <= xvals) & (xvals <= max(x)) # keep those within the range of the data
Xx. <- xvals[keepers]
y. <- denss$y[keepers]
Determine plot limits and data

if(turn.out == "d" || turn.out == "1") { # flip density/histogram
heights <- -heights
y. <= -y.

}

if(horizontal) {
xlim <- lim
xlim.bp <- xlim - x1im[1] # special for barplot(); need to shift the bars
ylim <- range(@, heights, y.)
ylim.bp <- ylim
x <= ¢(x1lim[1], x., x1im[2]) - x1im[1] # shift due to plot region set up by barplot()
y <- ¢c(0, y., 0)
} else {
xlim <- range(@, heights, y.)
xlim.bp <- x1lim
ylim <- lim
ylim.bp <- ylim - ylim[1] # special for barplot(); need to shift the bars

zenplot 37

x <- c(9, vy., 9
y <- c¢(x1im[1], x., x1im[2]) - ylim[1] # shift due to plot region set up by barplot()

}
Determining label position relative to the zenpath
loc <- c(0.1, 0.6)
if(turn.out == "d") loc <- 1-loc # when walking downwards, change both left/right and up/down
if(turn.out == "r") { # when walking to the right, coordinates change and 2nd is flipped

loc <- rev(loc)

loc[2] <- 1-loc[2]

}

if(turn.out == "1") { # when walking to the left, coordinates change and 1st is flipped
loc <- rev(loc)
loc[1] <- 1-loc[1]

}

Plotting
barplot(heights, width = widths, xlim = xlim.bp, ylim = ylim.bp,
space = @, horiz = !horizontal, main = "", xlab = "", axes = FALSE) # histogram
polygon(x = x, y =y, border = "royalblue3”, lwd = 1.4) # density
opar <- par(usr = c(0, 1, @, 1)) # switch to relative coordinates for text
on.exit(par(opar))
text(x = loc[1], y = loc[2], labels = label, cex = 0.7, srt = srt, font = 2,
col = "darkorange2") # label
3

Zenplot
zenplot(x, plotld = "hist_with_density_1d",
plot2d = function(zargs) {
density_2d_graphics(zargs)
points_2d_graphics(zargs, add = TRUE,
col = adjustcolor(”black”, alpha.f = 0.3))
»

Example: A path through pairs of a grouped t copula sample

1) Build a random sample from a 17-dimensional grouped t copula

d. <- c(8, 5, 4) # sector dimensions

d <- sum(d.) # total dimension

nu <- rep(c(12, 1, 0.25), times = d.) # d.o.f. for each dimension

n <- 500 # sample size

set.seed(271)

Z <- matrix(rnorm(n * d), ncol = n) # (d,n)-matrix

P <- matrix(@.5, nrow = d, ncol = d)

diag(P) <- 1

L <- t(chol(P)) # L: LL*T = P

Y <- t(L %*% Z) # (n,d)-matrix containing n d-vectors following N(Q,P)
U. <= runif(n)

W <- sapply(nu, function(nu.) 1/qgamma(U., shape = nu./2, rate = nu./2)) # (n,d)-matrix
X <= sqrt(W) *= Y # (n,d)-matrix

U <- sapply(1:d, function(j) pt(X[,jl, df = nu[j1)) # (n,d)-matrix

2) Plot the data with a pairs plot, colorizing the groups

38

zenplot

cols <- matrix("black”, nrow = d, ncol = d) # colors
start <- c(1, cumsum(head(d., n = -1))+1) # block start indices
end <- cumsum(d.) # block end indices
for(j in seq_along(d.)) cols[start[jl:end[j], start[jJl:end[j]] <- basecol[j] # colors
diag(cols) <- NA # remove colors corresponding to diagonal entries
cols <- as.vector(cols) # convert to a vector
cols <- cols[!is.na(cols)] # remove NA entries corresponding to diagonal
count <- @ # panel number
my_panel <- function(x, y, ...) # panel function for colorizing groups

{ count <<- count + 1; points(x, y, pch = ".", col = cols[count]) }
pairs(U, panel = my_panel, gap = 0,

labels = as.expression(sapply(1:d, function(j) bquote(italic(UL.(3)1)))))

3) Zenplot of a random path through all pairs, colorizing the respective group
Define our own points_2d_grid() for colorizing the groups
my_points_2d_grid <- function(zargs, basecol, d.) {
r <- extract_2d(zargs) # extract information from zargs
X <= r$x
y <= rs$y
xlim <- r$xlim
ylim <- r$ylim
num2d <- zargs$num/2
vars <- as.numeric(r$vlabs[num2d: (num2d+1)]) # two variables to be plotted
Alternatively, we could have used ord[r$vars[num2d: (num2d+1)1] with
the order 'ord' (see below) being passed to my_points_2d_grid()
col <- if(all(1 <= vars & vars <= d.[1])) { basecol[1] } else {
if(all(d.[1]+1 <= vars & vars <= d.[1]+d.[2])) { basecol[2] } else {
if(all(d.[1]+d.[2]+1 <= vars & vars <= d)) basecol[3] else "black”
}
} # determine the colors
vp <- vport(zargs$ispace, xlim = xlim, ylim = ylim, x = x, y = y) # viewport
pointsGrob(x = x, y =y, pch = 21, size = unit(0.02, units = "npc"),
name = "points_2d", gp = gpar(col = col), vp = vp)
3
Plot a random permutation of columns via a zenplot
Note: We set column labels here, as otherwise the labels can only

#it show *indices* of the variables to be plotted, i.e., the column
#it number in U[,ord], and not the original column number in U (which
#it is what we want to see in order to see how our 'path' through

#it the pairs of variables looks like).

colnames(U) <- 1:d
set.seed(1)
(ord <- sample(1:d, size = d)) # path; 1:d would walk parallel to the secondary diagonal
zenplot(U[,ord], plotld = "layout”, plot2d = "layout”, pkg = "grid") # layout
zenplot(U[,ord], # has correct variable names as column names
pkg = "grid",
plotld = function(zargs) arrow_1d_grid(zargs, col = "grey50"),
plot2d = function(zargs)
gTree(children = glist(
my_points_2d_grid(zargs, basecol = basecol, d. = d.),
rect_2d_grid(zargs, width = 1.05, height = 1.05,
col = "grey50", lty = 3),
label_2d_grid(zargs, loc = c(1.06, -0.03),

zenplot 39

just = c("left”, "top"”), rot = 90, cex = 0.45,
fontface = "bold"))))
=> The points are colorized correctly (compare with the pairs plot).

#i## Using ggplot2 #HHHHHHFHHHHHEHHHHHHHHBHAHAHBHHHAHAARAREREAHAHAHAR AR

Although not thoroughly tested, in principle ggplot2 can also be used via
pkg = "grid” as follows.

library(ggplot2)

Define our own 2d plot
my_points_2d_ggplot <- function(zargs, extract2d = TRUE)
{
if(extract2d) {
r <- extract_2d(zargs) # extract results from zargs
df <- data.frame(rx, ry) # data frame
names(df) <- c("x", "y")
cols <- zargs$x[,"Species"]
} else {
ii <- plot_indices(zargs) # the indices of the variables to be plotted
irs <- zargs$x # iris data
df <- data.frame(x = irs[,ii[1]], y = irs[,ii[2]1]) # data frame
cols <- irs[,"Species”]
}
num2d <- zargs$num/2 # plot number among all 2d plots
p <- ggplot() + geom_point(data = df, aes(x = x, y =y, colour = cols),
show.legend = num2d == 3) +
labs(x = "", y = "") # 2d plot
if(num2d == 3) p <- p + theme(legend.position = "bottom”, # legend for last 2d plot
legend.title = element_blank())
ggplot_gtable(ggplot_build(p)) # 2d plot as grob
3

Plotting
iris. <- iris
colnames(iris.) <- gsub("\\.", s
zenplot(iris., n2dplots = 3, plot2d
zenplot(iris., n2dplots = 3,
plot2d = function(zargs) my_points_2d_ggplot(zargs, extract2d = FALSE),
pkg = "grid")

non

X = colnames(iris)) # => nicer 1d labels
= "my_points_2d_ggplot", pkg = "grid")

Providing your own data structure ###H#HH#HHHHHHHHHAHAHAHRHAHHHARHAHEREAEHE

Danger zone: An example with a new data structure (here: a list of *listsx)
Note: - In this case, we most likely need to provide both plotid and plot2d
#it (but not in this case here since arrow_ld_graphics() does not depend
#it on the data structure)

40

#i# - Note that we still make use of zargs here.

#i#t - Also note that the variables are not correctly aligned anymore:
#it In the ggplot2 examples we guaranteed this by plot_indices(),

#i# but here we don't. This then still produces our layout but the

x/y axis of adjacent plots might not be the same anymore. This is
#it fine if only a certain order of the plots is of interest, but

#i# not a comparison between adjacent plots.

z <- list(list(1:5, 2:1, 1:3), list(1:5, 1:2))
zenplot(z, n2dplots = 4, plotld = "arrow"”, lastld = FALSE,
plot2d = function(zargs, ...) {
r <- unlist(zargs$x, recursive = FALSE)
num2d <- zargs$num/2 # plot number among 2d plots
x <= r[[num2d]]
y <= r[[num2d + 1]]
if(length(x) < length(y)) x <- rep(x, length.out = length(y))
else if(length(y) < length(x)) y <- rep(y, length.out = length(x))
plot(x, y, type = "b", xlab = "", ylab = "")
}, ispace = ¢(0.2, 0.2, 0.1, 0.1))

Zenplots based on 3d lattice plots ##HHHHHHHHHHHHHHHHRHHREHHBHEREHHEEEE

library(lattice)
library(grid)
library(gridExtra)

Build a list of cloud() plots (trellis objects)
Note:
- 'grid' problem: Without print(), the below zenplot() may fail (e.g.,
in fresh R sessions) with: 'Error in UseMethod("depth"”) :
no applicable method for 'depth' applied to an object of class "NULL"'
- col = "black” inside scales is needed to make the ticks show
mycloud <- function(x, num) {
lim <- extendrange(@:1, f = 0.04)
print(cloud(x[, 3] ~ x[, 11 * x[, 2], xlim = lim, ylim = lim, zlim = lim,
xlab = substitute(U[i.], list(i. = num)),
ylab = substitute(U[i.], list(i. = num + 1)),

zlab = substitute(U[i.], list(i. = num + 2)),

zoom = 1, scales = list(arrows = FALSE, col = "black"),

col = "black”,

par.settings = list(standard.theme(color = FALSE),
axis.line = list(col = "transparent”),

clip = list(panel = "off"))))
3
plst.3d <- lapply(1:4, function(i)
mycloud(x[,i:(i+2)], num = i)) # list of trellis objects

Preparing the zenplot

num <- length(plst.3d)

ncols <- 2

turns <- c(rep("r", 2x(ncols-1)), "d”, "d",

zenplot

zenplot 41

rep("1"”, 2x(ncols-1)), "d")
plot2d <- function(zargs) {
num2d <- (zargs$num+1)/2
vp <- vport(zargs$ispace, xlim = @:1, ylim = 0:1)
grob(p = zargs$x[[num2d]], vp = vp, cl = "lattice") # convert trellis to grid object
Note: For further plots, Work with

gTree(children = glList(grob(zargs$x[[num2d]], vp = vp,
Hit cl = "lattice")))

3

Zenplot

Note: We use a list of #*plots* here already (not data)
zenplot(plst.3d, turns = turns, n2dplots = num, pkg = "grid”, firstld = FALSE,
last1d = FALSE, plotld = "arrow_1d_grid”, plot2d = plot2d)

Index

xTopic datagen character, 9, 12, 16, 21, 27, 30, 31
burst, 2 connect_pairs, 32
extract, 6 connect_pairs (zenpath), 26
plot_indices, 22 convert_occupancy (occupancy), 8
xTopic datasets
de_elect, 3 data.frame, 2,4, 7,9, 25, 27, 28, 30
de_elect, 3

happiness, 7
olive, 9
wine, 25

+Topic dplot
plot_region, 23
plots_graphics, 10
plots_grid, 13
plots_loon, 17

density, 12, 16, 20

density_1d_graphics (plots_graphics), 10
density_1d_grid (plots_grid), 13
density_1d_loon (plots_loon), 17
density_2d_graphics (plots_graphics), 10
density_2d_grid (plots_grid), 13
density_2d_loon (plots_loon), 17

vport, 24 extract, 6
xTopic hplot extract_1d, 32
zenp%qt:29 extract_1d (extract), 6
«Topic utilities extract_2d, 12, 16, 20, 32
occupancy, 8 extract_2d (extract), 6
zenpath, 26 extract_pairs, 32

extract_pairs (zenpath), 26
arrow_1d_graphics (plots_graphics), 10
arrow_1d_grid (plots_grid), 13 function, 30
arrow_1d_loon (plots_loon), 17

arrow_2d_graphics (plots_graphics), 10 gpar%]6 . h). 26
arrow_2d_grid (plots_grid), 13 grag ;ga;;s(zenpat):
arrow_2d_loon (plots_loon), 17 grob, 10,

group, 32

arrows, 12

as.matrix, 27

axes_2d_graphics (plots_graphics), 10
axes_2d_grid (plots_grid), 13
axes_2d_loon (plots_loon), 17

group_2d_graphics, 12
group_2d_graphics (plots_graphics), 10
group_2d_grid, 16

group_2d_grid (plots_grid), 13
group_2d_loon, 27

group_2d_loon (plots_loon), 17

barplot, /1

boxplot. 12 groupData (zenpath), 26
boxplot_1d_graphics (plots_graphics), 10 happiness, 7

boxplot_1d_grid (plots_grid), 13 hist, 12, 15, 20

boxplot_1d_loon (plots_loon), 17 hist_1d_graphics (plots_graphics), 10
burst, 2, 12, 16, 20, 31, 32 hist_1d_grid (plots_grid), 13

42

INDEX

hist_1d_loon (plots_loon), 17

indexData (zenpath), 26
integer, 26, 27
invisible, 13, 16,23

jitter_1d_graphics (plots_graphics), 10
jitter_1d_grid (plots_grid), 13
jitter_1d_loon (plots_loon), 17

label_1d_graphics (plots_graphics), 10
label_1d_grid (plots_grid), 13
label_1d_loon (plots_loon), 17
label_2d_graphics (plots_graphics), 10
label_2d_grid (plots_grid), 13
label_2d_loon (plots_loon), 17
layout_1d_graphics (plots_graphics), 10
layout_1d_grid (plots_grid), 13
layout_1d_loon (plots_loon), 17
layout_2d_graphics (plots_graphics), 10
layout_2d_grid (plots_grid), 13
layout_2d_loon (plots_loon), 17
lines, 12, 16

lines_1d_graphics (plots_graphics), 10
lines_1d_grid (plots_grid), 13
lines_1d_loon (plots_loon), 17
linesGrob, /16

list, 2,6, 12, 16, 20, 27, 28, 30, 31
logical, 2,6,11, 12, 15, 16, 20, 27, 30, 31

matrix, 2, 9, 27, 28, 30, 31

NULL, 2, 12, 16, 20
numeric, 2, 27

occupancy, 8
olive, 9

par, 12

plot, 12,23

plot_indices, 22

plot_region, 23
plots_graphics, 6, 10, 23, 32
plots_grid, 6, 13, 24, 32
plots_loon, 6, 17, 32

points_1d_graphics (plots_graphics), 10
points_1d_grid (plots_grid), 13
points_1d_loon (plots_loon), 17
points_2d_graphics (plots_graphics), 10
points_2d_grid (plots_grid), 13

43

points_2d_loon (plots_loon), 17
pointsGrob, 15

qq_2d_graphics (plots_graphics), 10
qg_2d_grid (plots_grid), 13

rect_ld_graphics (plots_graphics), 10
rect_1d_grid (plots_grid), 13
rect_1d_loon (plots_loon), 17
rect_2d_graphics (plots_graphics), 10
rect_2d_grid (plots_grid), 13
rect_2d_loon (plots_loon), 17
rectGrob, /5

rug_1d_graphics (plots_graphics), 10
rug_ld_grid (plots_grid), 13
rug_1d_loon (plots_loon), 17

textGrob, 15
unfold (zenplot), 29

vector, 2, 9, 27, 30, 31
viewport, 24
vport, 24, 32

wine, 25

zenpath, 26, 32
zenplot, 2,6,9,11-13,15-17, 19, 21, 22, 28,
29

	burst
	de_elect
	extract
	happiness
	occupancy
	olive
	plots_graphics
	plots_grid
	plots_loon
	plot_indices
	plot_region
	vport
	wine
	zenpath
	zenplot
	Index

