GenAlgo: Classes and Methods to Use Genetic Algorithms for Feature Selection

Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.

Version: 2.2.0
Depends: R (≥ 3.0)
Imports: methods, stats, MASS, oompaBase (≥ 3.0.1), ClassDiscovery
Suggests: Biobase, xtable
Published: 2020-10-15
DOI: 10.32614/CRAN.package.GenAlgo
Author: Kevin R. Coombes
Maintainer: Kevin R. Coombes <krc at>
License: Apache License (== 2.0)
NeedsCompilation: no
Materials: NEWS
CRAN checks: GenAlgo results


Reference manual: GenAlgo.pdf
Vignettes: OOMPA GenAlgo


Package source: GenAlgo_2.2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): GenAlgo_2.2.0.tgz, r-oldrel (arm64): GenAlgo_2.2.0.tgz, r-release (x86_64): GenAlgo_2.2.0.tgz, r-oldrel (x86_64): GenAlgo_2.2.0.tgz
Old sources: GenAlgo archive


Please use the canonical form to link to this page.