WaveletKNN: Wavelet Based K-Nearest Neighbor Model

The employment of the Wavelet decomposition technique proves to be highly advantageous in the modelling of noisy time series data. Wavelet decomposition technique using the "haar" algorithm has been incorporated to formulate a hybrid Wavelet KNN (K-Nearest Neighbour) model for time series forecasting, as proposed by Anjoy and Paul (2017) <doi:10.1007/s00521-017-3289-9>.

Version: 0.1.0
Imports: caret, dplyr, caretForecast, Metrics, tseries, stats, wavelets
Published: 2023-04-05
DOI: 10.32614/CRAN.package.WaveletKNN
Author: Dr. Ranjit Kumar Paul [aut], Dr. Md Yeasin [aut, cre]
Maintainer: Dr. Md Yeasin <yeasin.iasri at gmail.com>
License: GPL-3
NeedsCompilation: no
CRAN checks: WaveletKNN results


Reference manual: WaveletKNN.pdf


Package source: WaveletKNN_0.1.0.tar.gz
Windows binaries: r-devel: WaveletKNN_0.1.0.zip, r-release: WaveletKNN_0.1.0.zip, r-oldrel: WaveletKNN_0.1.0.zip
macOS binaries: r-release (arm64): WaveletKNN_0.1.0.tgz, r-oldrel (arm64): WaveletKNN_0.1.0.tgz, r-release (x86_64): WaveletKNN_0.1.0.tgz, r-oldrel (x86_64): WaveletKNN_0.1.0.tgz


Please use the canonical form https://CRAN.R-project.org/package=WaveletKNN to link to this page.