
Package ‘cito’
October 12, 2022

Type Package

Date 2022-07-25

Title Building and Training Neural Networks

Version 1.0.0

Description Building and training custom neural networks in the typical R syntax. The 'torch' pack-
age is used for numerical calculations, which allows for training on CPU as well as on a graph-
ics card.

Encoding UTF-8

RoxygenNote 7.2.0

Depends R (>= 3.5)

Imports coro, checkmate, torch

License GPL (>= 3)

Suggests rmarkdown, knitr, testthat, plotly, ggraph, igraph, stats,
ggplot2

VignetteBuilder knitr

BugReports https://github.com/citoverse/cito/issues

NeedsCompilation no

Author Christian Amesöder [aut, cre],
Maximilian Pichler [aut]

Maintainer Christian Amesöder <Christian.Amesoeder@stud.uni-regensburg.de>

Repository CRAN

Date/Publication 2022-08-11 15:10:02 UTC

R topics documented:
ALE . 2
analyze_training . 3
cito . 4
coef.citodnn . 5
config_lr_scheduler . 6

1

https://github.com/citoverse/cito/issues

2 ALE

config_optimizer . 7
continue_training . 8
dnn . 9
PDP . 12
plot.citodnn . 14
predict.citodnn . 15
print.citodnn . 16
print.summary.citodnn . 17
residuals.citodnn . 17
summary.citodnn . 18

Index 19

ALE Accumulated Local Effect Plot (ALE)

Description

Performs an ALE for one or more features.

Usage

ALE(
model,
variable = NULL,
data = NULL,
K = 10,
type = c("equidistant", "quantile")

)

Arguments

model a model created by dnn

variable variable as string for which the PDP should be done

data data on which ALE is performed on, if NULL training data will be used.

K number of neighborhoods original feature space gets divided into

type method on how the feature space is divided into neighborhoods.

Details

If the defined variable is a numeric feature, the ALE is performed. Here, the non centered effect for
feature j with k equally distant neighborhoods is defined as:
ˆ̃
f j,ALE(x) =

∑kj(x)
k=1

1
nj(k)

∑
i:x

(i)
j
∈Nj(k)

[
f̂(zk,j , x

(i)
\j)− f̂(zk−1,j , x

(i)
\j)

]
Where Nj(k) is the k-th neighborhood and nj(k) is the number of observations in the k-th neigh-
borhood.

analyze_training 3

The last part of the equation,
[
f̂(zk,j , x

(i)
\j)− f̂(zk−1,j , x

(i)
\j)

]
represents the difference in model

prediction when the value of feature j is exchanged with the upper and lower border of the current
neighborhood.

Value

A list of plots made with ’ggplot2’ consisting of an individual plot for each defined variable.

See Also

PDP

Examples

if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

ALE(nn.fit, variable = "Petal.Length")
}

analyze_training Visualize training of Neural Network

Description

After training a model with cito, this function helps to analyze the training process and decide on
best performing model. Creates a ’plotly’ figure which allows to zoom in and out on training graph

Usage

analyze_training(object)

Arguments

object a model created by dnn

Value

a ’plotly’ figure

4 cito

Examples

if(torch::torch_is_installed()){
library(cito)
set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,],validation = 0.1)

show zoomable plot of training and validation losses
analyze_training(nn.fit)

set model which is used for predictions to model from epoch 22
nn.fit$use_model_epoch <- 22

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])

Scatterplot
plot(iris[validation_set,]$Sepal.Length,predictions)
}

cito ’cito’: Building and training neural networks

Description

Building and training custom neural networks in the typical R syntax. The ’torch’ package is used
for numerical calculations, which allows for training on CPU as well as on a graphics card. The
main function is dnn which trains a custom deep neural network.

Installation

in order to install cito please follow these steps:

install.packges("cito")

library(torch)

install_torch(reinstall = TRUE)

library(cito)

cito functions

• dnn: train deep neural network

• continue_training: continues training of an existing cito dnn model for additional epochs

• PDP: plot the partial dependency plot for a specific feature

• ALE: plot the accumulated local effect plot for a specific feature

coef.citodnn 5

Examples

vignette("cito", package="cito")

coef.citodnn Returns list of parameters the neural network model currently has in
use

Description

Returns list of parameters the neural network model currently has in use

Usage

S3 method for class 'citodnn'
coef(object, ...)

Arguments

object a model created by dnn

... nothing implemented yet

Value

list of weights of neural network

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Sturcture of Neural Network
print(nn.fit)

#analyze weights of Neural Network
coef(nn.fit)
}

6 config_lr_scheduler

config_lr_scheduler Creation of customized learning rate scheduler objects

Description

Helps create custom learning rate schedulers for dnn.

Usage

config_lr_scheduler(
type = c("lambda", "multiplicative", "one_cycle", "step"),
verbose = FALSE,
...

)

Arguments

type String defining which type of scheduler should be used. See Details.

verbose If TRUE, additional information about scheduler will be printed to console.

... additional arguments to be passed to scheduler. See Details.

Details

different learning rate scheduler need different variables, these functions will tell you which vari-
ables can be set:

• lambda: lr_lambda

• multiplicative: lr_multiplicative

• one_cycle: lr_one_cycle

• step: lr_step

Value

object of class cito_lr_scheduler to give to dnn

Examples

if(torch::torch_is_installed()){
library(cito)

create learning rate scheduler object
scheduler <- config_lr_scheduler(type = "step",

step_size = 30,
gamma = 0.15,
verbose = TRUE)

config_optimizer 7

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris, lr_scheduler = scheduler)

}

config_optimizer Creation of customized optimizer objects

Description

Helps you create custom optimizer for dnn. It is recommended to set learning rate in dnn.

Usage

config_optimizer(
type = c("adam", "adadelta", "adagrad", "rmsprop", "rprop", "sgd"),
verbose = FALSE,
...

)

Arguments

type character string defining which optimizer should be used. See Details.

verbose If TRUE, additional information about scheduler will be printed to console

... additional arguments to be passed to optimizer. See Details.

Details

different optimizer need different variables, this function will tell you how the variables are set. For
more information see the corresponding functions:

• adam: optim_adam

• adadelta: optim_adadelta

• adagrad: optim_adagrad

• rmsprop: optim_rmsprop

• rprop: optim_rprop

• sgd: optim_sgd

Value

object of class cito_optim to give to dnn

8 continue_training

Examples

if(torch::torch_is_installed()){
library(cito)

create optimizer object
opt <- config_optimizer(type = "adagrad",

lr_decay = 1e-04,
weight_decay = 0.1,
verbose = TRUE)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris, optimizer = opt)

}

continue_training Continues training of a model for additional periods

Description

Continues training of a model for additional periods

Usage

continue_training(
model,
epochs = 32,
continue_from = NULL,
data = NULL,
device = "cpu",
verbose = TRUE,
changed_params = NULL

)

Arguments

model a model created by dnn

epochs additional epochs the training should continue for

continue_from define which epoch should be used as starting point for training, 0 if last epoch
should be used

data matrix or data.frame if not provided data from original training will be used

device device on which network should be trained on, either "cpu" or "cuda"

verbose print training and validation loss of epochs

changed_params list of arguments to change compared to original training setup, see dnn which
parameter can be changed

dnn 9

Value

a model of class cito.dnn same as created by dnn

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,], epochs = 32)

continue training for another 32 epochs
nn.fit<- continue_training(nn.fit,epochs = 32)

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])
}

dnn DNN

Description

fits a custom deep neural network. dnn() supports the formula syntax and allows to customize the
neural network to a maximal degree. So far, only Multilayer Perceptrons are possible. To learn
more about Deep Learning, see here

Usage

dnn(
formula,
data = NULL,
loss = c("mae", "mse", "softmax", "cross-entropy", "gaussian", "binomial", "poisson"),
hidden = c(10L, 10L, 10L),
activation = c("relu", "leaky_relu", "tanh", "elu", "rrelu", "prelu", "softplus",
"celu", "selu", "gelu", "relu6", "sigmoid", "softsign", "hardtanh", "tanhshrink",
"softshrink", "hardshrink", "log_sigmoid"),

validation = 0,
bias = TRUE,
lambda = 0,
alpha = 0.5,
dropout = 0,
optimizer = c("adam", "adadelta", "adagrad", "rmsprop", "rprop", "sgd"),

https://www.nature.com/articles/nature14539

10 dnn

lr = 0.01,
batchsize = 32L,
shuffle = FALSE,
epochs = 32,
plot = TRUE,
verbose = TRUE,
lr_scheduler = NULL,
device = c("cpu", "cuda"),
early_stopping = FALSE

)

Arguments

formula an object of class "formula": a description of the model that should be fitted

data matrix or data.frame

loss loss after which network should be optimized. Can also be distribution from the
stats package or own function

hidden hidden units in layers, length of hidden corresponds to number of layers

activation activation functions, can be of length one, or a vector of different activation
functions for each layer

validation percentage of data set that should be taken as validation set (chosen randomly)

bias whether use biases in the layers, can be of length one, or a vector (number of
hidden layers + 1 (last layer)) of logicals for each layer.

lambda strength of regularization: lambda penalty, λ ∗ (L1 + L2) (see alpha)

alpha add L1/L2 regularization to training (1 − α) ∗ |weights| + α||weights||2 will
get added for each layer. Can be single integer between 0 and 1 or vector of
alpha values if layers should be regularized differently.

dropout dropout rate, probability of a node getting left out during training (see nn_dropout)

optimizer which optimizer used for training the network, for more adjustments to opti-
mizer see config_optimizer

lr learning rate given to optimizer

batchsize number of samples that are used to calculate one learning rate step

shuffle if TRUE, data in each batch gets reshuffled every epoch

epochs epochs the training goes on for

plot plot training loss

verbose print training and validation loss of epochs

lr_scheduler learning rate scheduler created with config_lr_scheduler

device device on which network should be trained on.

early_stopping if set to integer, training will stop if validation loss worsened between current
defined past epoch.

dnn 11

Details

In a Multilayer Perceptron (MLP) network every neuron is connected with all neurons of the pre-
vious layer and connected to all neurons of the layer afterwards. The value of each neuron is
calculated with:

a(
∑

j wj ∗ aj)
Where wj is the weight and aj is the value from neuron j to the current one. a() is the activation
function, e.g. relu(x) = max(0, x) As regularization methods there is dropout and elastic net
regularization available. These methods help you avoid over fitting.

Training on graphic cards: If you want to train on your cuda devide, you have to install the NVIDIA
CUDA toolkit version 11.3. and cuDNN 8.4. beforehand. Make sure that you have xactly these
versions installed, since it does not wor kwith other version. For more information see mlverse:
’torch’

Value

an S3 object of class "cito.dnn" is returned. It is a list containing everything there is to know
about the model and its training process. The list consists of the following attributes:

net An object of class "nn_sequential" "nn_module", originates from the torch pack-
age and represents the core object of this workflow.

call The original function call
loss A list which contains relevant information for the target variable and the used

loss function
data Contains data used for training the model
weigths List of weights for each training epoch
use_model_epoch

Integer, which defines which model from which training epoch should be used
for prediction.

loaded_model_epoch

Integer, shows which model from which epoch is loaded currently into model$net.
model_properties

A list of properties of the neural network, contains number of input nodes, num-
ber of output nodes, size of hidden layers, activation functions, whether bias is
included and if dropout layers are included.

training_properties

A list of all training parameters that were used the last time the model was
trained. It consists of learning rate, information about an learning rate scheduler,
information about the optimizer, number of epochs, whether early stopping was
used, if plot was active, lambda and alpha for L1/L2 regularization, batchsize,
shuffle, was the data set split into validation and training, which formula was
used for training and at which epoch did the training stop.

losses A data.frame containing training and validation losses of each epoch

See Also

predict.citodnn, plot.citodnn, coef.citodnn,print.citodnn, summary.citodnn, continue_training,
analyze_training, PDP, ALE,

https://torch.mlverse.org/docs/articles/installation.html
https://torch.mlverse.org/docs/articles/installation.html

12 PDP

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Sturcture of Neural Network
print(nn.fit)

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])

Scatterplot
plot(iris[validation_set,]$Sepal.Length,predictions)
MAE
mean(abs(predictions-iris[validation_set,]$Sepal.Length))

Get variable importances
summary(nn.fit)

Partial dependencies
PDP(nn.fit, variable = "Petal.Length")

Accumulated local effect plots
ALE(nn.fit, variable = "Petal.Length")

}

PDP Partial Dependence Plot (PDP)

Description

Calculates the Partial Dependency Plot for one feature, either numeric or categorical. Returns it as
a plot.

Usage

PDP(model, variable = NULL, data = NULL, ice = FALSE, resolution.ice = 20)

Arguments

model a model created by dnn

PDP 13

variable variable as string for which the PDP should be done. If none is supplied it is
done for all variables.

data specify new data PDP should be performed . If NULL, PDP is performed on the
training data.

ice Individual Conditional Dependence will be shown if TRUE

resolution.ice resolution in which ice will be computed

Details

Performs the estimation of the partial function f̂S

f̂S(xS) =
1
n

∑n
i=1 f̂(xS , x

(i)
C)

with a Monte Carlo Estimation:

f̂S(xS) =
1
n

∑n
i=1 f̂(xS , x

(i)
C)

If a categorical feature is analyzed, all data instances are used and set to each level. Then an average
is calculated per category and put out in a bar plot.

If ice is set to true additional the individual conditional dependence will be shown and the original
PDP will be colored yellow. These lines show, how each individual data sample reacts to changes
in the feature. This option is not available for categorical features. Unlike PDP the ICE curves are
computed with a value grid instead of utilizing every value of every data entry.

Value

A list of plots made with ’ggplot2’ consisting of an individual plot for each defined variable.

See Also

ALE

Examples

if(torch::torch_is_installed()){
library(cito)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris)

PDP(nn.fit, variable = "Petal.Length")
}

14 plot.citodnn

plot.citodnn Creates graph plot which gives an overview of the network architec-
ture.

Description

Creates graph plot which gives an overview of the network architecture.

Usage

S3 method for class 'citodnn'
plot(x, node_size = 1, scale_edges = FALSE, ...)

Arguments

x a model created by dnn

node_size size of node in plot

scale_edges edge weight gets scaled according to other weights (layer specific)

... no further functionality implemented yet

Value

A plot made with ’ggraph’ + ’igraph’ that represents the neural network

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

plot(nn.fit)
}

predict.citodnn 15

predict.citodnn Predict from a fitted dnn model

Description

Predict from a fitted dnn model

Usage

S3 method for class 'citodnn'
predict(object, newdata = NULL, type = c("link", "response"), ...)

Arguments

object a model created by dnn

newdata new data for predictions

type link or response

... additional arguments

Value

prediction matrix

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Use model on validation set
predictions <- predict(nn.fit, iris[validation_set,])
Scatterplot
plot(iris[validation_set,]$Sepal.Length,predictions)
MAE
mean(abs(predictions-iris[validation_set,]$Sepal.Length))
}

16 print.citodnn

print.citodnn Print class citodnn

Description

Print class citodnn

Usage

S3 method for class 'citodnn'
print(x, ...)

Arguments

x a model created by dnn

... additional arguments

Value

prediction matrix

original object x gets returned

Examples

if(torch::torch_is_installed()){
library(cito)

set.seed(222)
validation_set<- sample(c(1:nrow(datasets::iris)),25)

Build and train Network
nn.fit<- dnn(Sepal.Length~., data = datasets::iris[-validation_set,])

Sturcture of Neural Network
print(nn.fit)
}

print.summary.citodnn 17

print.summary.citodnn Print method for class summary.citodnn

Description

Print method for class summary.citodnn

Usage

S3 method for class 'summary.citodnn'
print(x, ...)

Arguments

x a summary object created by summary.citodnn

... additional arguments

Value

original object x gets returned

residuals.citodnn Extract Model Residuals

Description

Returns residuals of training set.

Usage

S3 method for class 'citodnn'
residuals(object, ...)

Arguments

object a model created by dnn

... no additional arguments implemented

Value

residuals of training set

18 summary.citodnn

summary.citodnn Summarize Neural Network of class citodnn

Description

Performs a Feature Importance calculation based on Permutations

Usage

S3 method for class 'citodnn'
summary(object, n_permute = 256, ...)

Arguments

object a model of class citodnn created by dnn

n_permute number of permutations performed, higher equals more accurate importance re-
sults

... additional arguments

Details

Performs the feature importance calculation as suggested by Fisher, Rudin, and Dominici (2018).
For each feature n permutation get done and original and permuted predictive mean squared error
(eperm & eorig) get evaluated with FIj = eperm/eorig. Based on Mean Squared Error.

Value

summary.glm returns an object of class "summary.citodnn", a list with components

Index

ALE, 2, 4, 11, 13
analyze_training, 3, 11

cito, 4
coef.citodnn, 5, 11
config_lr_scheduler, 6, 10
config_optimizer, 7, 10
continue_training, 4, 8, 11

dnn, 2–9, 9, 12, 14–18

formula, 10

lr_lambda, 6
lr_multiplicative, 6
lr_one_cycle, 6
lr_step, 6

nn_dropout, 10

optim_adadelta, 7
optim_adagrad, 7
optim_adam, 7
optim_rmsprop, 7
optim_rprop, 7
optim_sgd, 7

PDP, 3, 4, 11, 12
plot.citodnn, 11, 14
predict.citodnn, 11, 15
print.citodnn, 11, 16
print.summary.citodnn, 17

residuals.citodnn, 17

summary.citodnn, 11, 17, 18

19

	ALE
	analyze_training
	cito
	coef.citodnn
	config_lr_scheduler
	config_optimizer
	continue_training
	dnn
	PDP
	plot.citodnn
	predict.citodnn
	print.citodnn
	print.summary.citodnn
	residuals.citodnn
	summary.citodnn
	Index

