lares: Analytics, Data Mining & Machine Learning Sidekick

Auxiliary package for better/faster analytics, visualization, data mining, and machine learning tasks. With a wide variety of family functions, like Machine Learning, Data Wrangling, Exploratory, and Scrapper, it helps the analyst or data scientist to get quick and robust results, without the need of repetitive coding or extensive programming skills.

Version: 5.0.4
Depends: R (≥ 3.5)
Imports: dplyr, ggplot2, h2o, httr, jsonlite, lubridate, magrittr, openxlsx, patchwork, pROC, rlang, rpart, rpart.plot, rvest, stringr, tidyr, yaml
Suggests: beepr, DALEX, DBI, forecast, googleAuthR, googlesheets4, knitr, quantmod, plotly, rdrop2, rmarkdown, rtweet, tm, wordcloud
Published: 2021-12-03
Author: Bernardo Lares [aut, cre]
Maintainer: Bernardo Lares <laresbernardo at gmail.com>
BugReports: https://github.com/laresbernardo/lares/issues
License: AGPL-3
URL: https://github.com/laresbernardo/lares, https://laresbernardo.github.io/lares/
NeedsCompilation: no
Materials: README
CRAN checks: lares results

Documentation:

Reference manual: lares.pdf
Vignettes: Introduction to AutoML using lares

Downloads:

Package source: lares_5.0.4.tar.gz
Windows binaries: r-devel: lares_5.0.3.zip, r-release: lares_5.0.3.zip, r-oldrel: lares_5.0.3.zip
macOS binaries: r-release (arm64): lares_5.0.3.tgz, r-release (x86_64): lares_5.0.3.tgz, r-oldrel: lares_5.0.3.tgz
Old sources: lares archive

Reverse dependencies:

Reverse imports: LDLcalc

Linking:

Please use the canonical form https://CRAN.R-project.org/package=lares to link to this page.