Package ‘mlr3fselect’
March 9, 2021

Title Feature Selection for 'mlr3’

Version 0.5.1

Description Implements methods for feature selection with
'mlr3’, e.g. random search and sequential selection. Various
termination criteria can be set and combined. The class

'AutoFSelector' provides a convenient way to perform nested resampling
in combination with 'mlr3'".

License LGPL-3

URL https://mlr3fselect.mlr-org.com,
https://github.com/mlr-org/mlr3fselect

BugReports https://github.com/mlr-org/mlr3fselect/issues

Depends R (>=3.1.0)

Imports bbotk (>=0.3.0), checkmate (>= 2.0.0), data.table, lgr, mlr3
(>=0.7.0), mlr3misc (>= 0.7.0), mlr3pipelines (>= 0.3.0),
paradox (>=0.7.0), R6

Suggests genalg, rpart, testthat (>= 3.0.0)

Config/testthat/edition 3

Config/testthat/parallel true

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.1.1

Collate 'AutoFSelector.R' 'ArchiveFSelect.R' 'ObjectiveFSelect.R'
'mlr_fselectors.R' 'FSelector.R' 'FSelectorFromOptimizer.R'
'FSelectorExhaustiveSearch.R' 'FSelectorRFE.R'
'FSelectorRandomSearch.R' 'FSelectorSequential.R'
'FSelectorDesignPoints.R' 'FSelectorGeneticSearch.R'

'FSelectInstanceMultiCrit.R' 'FSelectInstanceSingleCrit.R'
'reexports.R' 'sugar.R' 'bibentries.R' 'zzz.R'

Author Marc Becker [aut, cre] (<https://orcid.org/0000-0002-8115-0400>),
Patrick Schratz [aut] (<https://orcid.org/0000-0003-0748-6624>),
Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>),

Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>)

1

https://mlr3fselect.mlr-org.com
https://github.com/mlr-org/mlr3fselect
https://github.com/mlr-org/mlr3fselect/issues

mir3fselect-package

Maintainer Marc Becker <marcbecker@posteo.de>
Repository CRAN
Date/Publication 2021-03-09 11:00:02 UTC

R topics documented:

Index

mir3fselect-package 2
ArchiveFSelect e 3
AutoFSelector e e 4
£S e e e e 6
FSelectlnstanceMultiCrit 7
FSelectlnstanceSingleCrit e 9
FSelector e 11
FSelectorDesignPoints 14
FSelectorExhaustiveSearch 16
FSelectorGeneticSearch 17
FSelectorRandomSearch 19
FSelectorRFE e 20
FSelectorSequential L 22
milr_fselectors e 24
ObjectiveFSelect 24

26

mlr3fselect-package mlr3fselect: Feature Selection for 'mir3’

Description

Implements methods for feature selection with *mlr3’, e.g. random search and sequential selec-
tion. Various termination criteria can be set and combined. The class *AutoFSelector’ provides a
convenient way to perform nested resampling in combination with 'mlr3’.

Author(s)

Maintainer: Marc Becker <marcbecker@posteo.de> (ORCID)

Authors:

 Patrick Schratz <patrick.schratz@gmail.com> (ORCID)
* Michel Lang <michellang@gmail.com> (ORCID)
¢ Bernd Bischl <bernd_bischl@gmx.net> (ORCID)

https://orcid.org/0000-0002-8115-0400
https://orcid.org/0000-0003-0748-6624
https://orcid.org/0000-0001-9754-0393
https://orcid.org/0000-0001-6002-6980

ArchiveFSelect 3

See Also
Useful links:
* https://mlr3fselect.mlr-org.com

e https://github.com/mlr-org/mlr3fselect
* Report bugs at https://github.com/mlr-org/mlr3fselect/issues

ArchiveFSelect Logging object for objective function evaluations

Description

Container around a data.table::data.table which stores all performed function calls of the Objective

and the associated mlr3::BenchmarkResult.
$benchmark_result stores a mlr3::BenchmarkResult which contains the mlr3::ResampleResult of
all performed function calls. The mlr3::BenchmarkResult is connected to the data.table::data.table

via the uhash column.

Super class

bbotk: :Archive -> ArchiveFSelect

Public fields

benchmark_result (mlr3::BenchmarkResult)
Stores benchmark result.

Methods

Public methods:
¢ ArchiveFSelect$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ArchiveFSelect$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

https://mlr3fselect.mlr-org.com
https://github.com/mlr-org/mlr3fselect
https://github.com/mlr-org/mlr3fselect/issues

4 AutoFSelector

AutoFSelector AutoFSelector

Description

The AutoFSelector is a mlr3::Learner which wraps another mlr3::Learner and performs the fol-
lowing steps during $train():

1. The wrapped (inner) learner is trained on the feature subsets via resampling. The feature
selection can be specified by providing a FSelector, a bbotk::Terminator, a mlr3::Resampling
and a mlr3::Measure.

2. A final model is fit on the complete training data with the best found feature subset.

During $predict() the AutoFSelector just calls the predict method of the wrapped (inner) learner.

Note that this approach allows to perform nested resampling by passing an AutoFSelector ob-
ject to mlr3::resample() or mlr3::benchmark(). To access the inner resampling results, set
store_fselect_instance = TRUE and execute mlr3::resample() or mlr3: :benchmark() with
store_models = TRUE.

Super class

mlr3::Learner -> AutoFSelector

Public fields

instance_args (list())
All arguments from construction to create the FSelectInstanceSingleCrit.

fselector (FSelector)
Stores the feature selection algorithm.

Active bindings
archive ([ArchiveFSelect)

Returns FSelectInstanceSingleCrit archive.

learner (mlir3::Learner)
Trained learner.

fselect_instance (FSelectlnstanceSingleCrit)
Internally created feature selection instance with all intermediate results.

fselect_result (named list())
Short-cut to $result from FSelectInstanceSingleCrit.

AutoFSelector 5

Methods

Public methods:

e AutoFSelector$new()
e AutoFSelector$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

AutoFSelector$new(
learner,
resampling,
measure,
terminator,
fselector,
store_fselect_instance = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE,
check_values = FALSE

)

Arguments:

learner (mlr3::Learner)
Learner to optimize the feature subset for, see FSelectInstanceSingleCrit.

resampling (mlr3::Resampling)
Resampling strategy during feature selection, see FSelectInstanceSingleCrit. This mlr3::Resampling
is meant to be the inner resampling, operating on the training set of an arbitrary outer re-
sampling. For this reason it is not feasible to pass an instantiated mlr3::Resampling here.

measure (mlr3::Measure)
Performance measure to optimize.

terminator (bbotk::Terminator)
When to stop feature selection, see FSelectInstanceSingleCrit.

fselector (FSelector)
Feature selection algorithm to run.

store_fselect_instance (logical(1))
If TRUE (default), stores the internally created FSelectInstanceSingleCrit with all intermedi-
ate results in slot $fselect_instance.

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?
check_values (logical(1))

Check the parameters before the evaluation and the results for validity?
Method clone(): The objects of this class are cloneable with this method.
Usage:
AutoFSelector$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

fs

Examples

library(mlr3)

task = tsk("iris")

learner = 1rn("classif.rpart”)
resampling = rsmp("holdout”)
measure = msr("classif.ce")

terminator = trm("evals”, n_evals = 3)

fselector = fs("exhaustive_search”)

afs = AutoFSelector$new(learner, resampling, measure, terminator, fselector,
store_fselect_instance = TRUE)

afs$train(task)
afs$model
afs$learner

fs

Syntactic Sugar for FSelect Construction

Description

This function complements mlr_fselectors with functions in the spirit of mlr3::mlr_sugar.

Usage
fs(.key,)
Arguments
.key (character(1))
Key passed to the respective dictionary to retrieve the object.
(named list())
Named arguments passed to the constructor, to be set as parameters in the para-
dox::ParamSet, or to be set as public field. See mlr3misc::dictionary_sugar_get()
for more details.
Value
FSelector.
Examples

fs("sequential”, max_features = 4)

FESelectInstanceMultiCrit 7

FSelectInstanceMultiCrit
Multi Criterion Feature Selection Instance

Description

Specifies a general feature selection scenario, including objective function and archive for feature
selection algorithms to act upon. This class stores an ObjectiveFSelect object that encodes the
black box objective function which an FSelector has to optimize. It allows the basic operations
of querying the objective at feature subsets ($eval_batch()), storing the evaluations in the internal
bbotk::Archive and accessing the final result ($result).

Evaluations of feature subsets are performed in batches by calling mlr3: :benchmark() internally.
Before a batch is evaluated, the bbotk:: Terminator is queried for the remaining budget. If the avail-
able budget is exhausted, an exception is raised, and no further evaluations can be performed from
this point on.

The FSelector is also supposed to store its final result, consisting of the selected feature subsets and
associated estimated performance values, by calling the method instance$assign_result().

Super classes

bbotk: :0OptimInstance -> bbotk: :OptimInstanceMultiCrit -> FSelectInstanceMultiCrit

Active bindings

result_feature_set (list() of character())
Feature sets for task subsetting.

Methods

Public methods:

e FSelectInstanceMultiCrit$new()
e FSelectInstanceMultiCrit$assign_result()
e FSelectInstanceMultiCrit$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
FSelectInstanceMultiCrit$new(

task,

learner,

resampling,

measures,

terminator,

store_models = FALSE,
check_values = TRUE,
store_benchmark_result = TRUE

8 FESelectInstanceMultiCrit

Arguments:

task (mlr3::Task)
Task to operate on.

learner (mlr3::Learner).

resampling (mlr3::Resampling)
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits.

measures (list of mlr3::Measure)
Measures to optimize. If NULL, mlr3’s default measure is used.

terminator (bbotk::Terminator).
store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

store_benchmark_result (logical(1))
Store benchmark result in archive?

Method assign_result(): The FSelector object writes the best found feature subsets and
estimated performance values here. For internal use.

Usage:

FSelectInstanceMultiCrit$assign_result(xdt, ydt)

Arguments:

xdt (data.table::data.table())
x values as data. table. Each row is one point. Contains the value in the search space of
the FSelectInstanceMultiCrit object. Can contain additional columns for extra information.

ydt (data.table::data.table())
Optimal outcomes, e.g. the Pareto front.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FSelectInstanceMultiCrit$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

library(mlr3)
library(data.table)

Objects required to define the performance evaluator
task = tsk("iris")

measures = msrs(c(”classif.ce”, "classif.acc"))
learner = 1rn("classif.rpart”)

resampling = rsmp(”"cv")

terminator = trm("evals”, n_evals = 8)

inst = FSelectInstanceMultiCrit$new(

https://CRAN.R-project.org/package=mlr3

FSelectInstanceSingleCrit 9

task = task,

learner = learner,
resampling = resampling,
measures = measures,
terminator = terminator

)

Try some feature subsets

xdt = data.table(
Petal.Length = c(TRUE, FALSE),
Petal.Width = c(FALSE, TRUE),
Sepal.Length = c(TRUE, FALSE),
Sepal.Width = c(FALSE, TRUE)

)

inst$eval_batch(xdt)

Get archive data
as.data.table(inst$archive)

FSelectInstanceSingleCrit
Single Criterion Feature Selection Instance

Description

Specifies a general feature selection scenario, including objective function and archive for feature
selection algorithms to act upon. This class stores an ObjectiveFSelect object that encodes the
black box objective function which an FSelector has to optimize. It allows the basic operations
of querying the objective at feature subsets ($eval_batch()), storing the evaluations in the internal
bbotk::Archive and accessing the final result ($result).

Evaluations of feature subsets are performed in batches by calling ml1r3: :benchmark() internally.
Before a batch is evaluated, the bbotk::Terminator is queried for the remaining budget. If the avail-
able budget is exhausted, an exception is raised, and no further evaluations can be performed from
this point on.

The FSelector is also supposed to store its final result, consisting of a selected feature subset and
associated estimated performance values, by calling the method instance$assign_result().

Super classes

bbotk: :0OptimInstance ->bbotk: :OptimInstanceSingleCrit ->FSelectInstanceSingleCrit

Active bindings

result_feature_set (character())
Feature set for task subsetting.

10 FSelectInstanceSingleCrit

Methods

Public methods:

e FSelectInstanceSingleCrit$new()
e FSelectInstanceSingleCrit$assign_result()
e FSelectInstanceSingleCrit$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectInstanceSingleCrit$new(
task,
learner,
resampling,
measure,
terminator,
store_models = FALSE,
check_values = TRUE,
store_benchmark_result = TRUE
)
Arguments:
task (mlr3::Task)
Task to operate on.
learner (mlr3::Learner).

resampling (mlr3::Resampling)
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits.

measure (mlr3::Measure)
Measure to optimize.

terminator (bbotk::Terminator).
store_models (logical(1)). Store models in benchmark result?

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

store_benchmark_result (logical(1))
Store benchmark result in archive?

Method assign_result(): The FSelector writes the best found feature subset and estimated
performance value here. For internal use.

Usage:

FSelectInstanceSingleCrit$assign_result(xdt, y)

Arguments:

xdt (data.table::data.table())
x values as data. table. Each row is one point. Contains the value in the search space of
the FSelectInstanceMultiCrit object. Can contain additional columns for extra information.
y (numeric(1))
Optimal outcome.

FSelector 11

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectInstanceSingleCrit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(mlr3)
library(data.table)

Objects required to define the objective function
task = tsk("iris")

measure = msr("classif.ce")

learner = lrn("classif.rpart”)

resampling = rsmp("cv")

Create instance
terminator = trm("evals”, n_evals = 8)
inst = FSelectInstanceSingleCrit$new(
task = task,
learner = learner,
resampling = resampling,
measure = measure,
terminator = terminator

)

Try some feature subsets

xdt = data.table(
Petal.Length = c(TRUE, FALSE),
Petal.Width = c(FALSE, TRUE),
Sepal.Length = c(TRUE, FALSE),
Sepal.Width = c(FALSE, TRUE)

)

inst$eval_batch(xdt)

Get archive data
as.data.table(inst$archive)

FSelector FSelector

Description

Abstract FSelector class that implements the base functionality each fselector must provide. A
FSelector object describes the feature selection strategy, i.e. how to optimize the black-box func-
tion and its feasible set defined by the FSelectInstanceSingleCrit / FSelectInstanceMultiCrit object.

12 FSelector

A fselector must write its result into the FSelectInstanceSingleCrit / FSelectInstanceMultiCrit using
the assign_result method of the bbotk::OptimInstance at the end of its selection in order to store
the best selected feature subset and its estimated performance vector.

Private Methods

e .optimize(instance) -> NULL
Abstract base method. Implement to specify feature selection of your subclass. See technical
details sections.

e .assign_result(instance) -> NULL
Abstract base method. Implement to specify how the final feature subset is selected. See
technical details sections.

Technical Details and Subclasses

A subclass is implemented in the following way:

¢ Inherit from FSelector.
* Specify the private abstract method $.optimize() and use it to call into your optimizer.
* You need to call instance$eval_batch() to evaluate feature subsets.

* The batch evaluation is requested at the FSelectInstanceSingleCrit / FSelectInstanceMultiCrit
object instance, so each batch is possibly executed in parallel via mlr3: :benchmark(), and
all evaluations are stored inside of instance$archive.

* Before the batch evaluation, the bbotk:: Terminator is checked, and if it is positive, an exception
of class "terminated_error” is generated. In the later case the current batch of evaluations
is still stored in instance, but the numeric scores are not sent back to the handling optimizer
as it has lost execution control.

» After such an exception was caught we select the best feature subset from instance$archive
and return it.

* Note that therefore more points than specified by the bbotk::Terminator may be evaluated, as
the Terminator is only checked before a batch evaluation, and not in-between evaluation in a
batch. How many more depends on the setting of the batch size.

* Overwrite the private super-method .assign_result() if you want to decide yourself how
to estimate the final feature subset in the instance and its estimated performance. The default
behavior is: We pick the best resample-experiment, regarding the given measure, then assign
its feature subset and aggregated performance to the instance.

Public fields

param_set (paradox::ParamSet).
param_classes (character()).
properties (character()).

packages (character()).

FSelector 13

Methods

Public methods:
e FSelector$new()
* FSelector$format()
e FSelector$print()
e FSelector$optimize()
* FSelector$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
FSelector$new(param_set, properties, packages = character(Q))
Arguments:

param_set paradox::ParamSet
Set of control parameters for fselector.

properties (character())
Set of properties of the fselector. Must be a subset of mlr_reflections$fselect_properties.

packages (character())
Set of required packages. Note that these packages will be loaded via requireNamespace(),
and are not attached.

Method format(): Helper for print outputs.
Usage:
FSelector$format ()

Returns: (character()).

Method print(): Print method.

Usage:

FSelector$print()

Returns: (character()).
Method optimize(): Performs the feature selection on a FSelectIlnstanceSingleCrit or FSe-
lectInstanceMultiCrit until termination. The single evaluations will be written into the ArchiveF-

Select that resides in the FSelectInstanceSingleCrit / FSelectInstanceMultiCrit. The result will be
written into the instance object.

Usage:
FSelector$optimize(inst)

Arguments:
inst (FSelectInstanceSingleCritlFSelectInstanceMultiCrit).

Returns: data.table::data.table.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FSelector$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

14 FSelectorDesignPoints

Examples

library(mlr3)
terminator = trm("evals”, n_evals = 3)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = lrn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)

swap this line to use a different FSelector
fselector = fs("random_search")

modifies the instance by reference
fselector$optimize(instance)

returns best feature subset and best performance
instance$result

allows access of data.table / benchmark result of full path of all evaluations
instance$archive

FSelectorDesignPoints Feature Selection via Design Points

Description

FSelectorDesignPoints class that implements feature selection w.r.t. fixed feature sets. We sim-
ply search over a set of feature subsets fully specified by the user. The feature sets are evaluated in
order as given.

In order to support general termination criteria and parallelization, we evaluate feature sets in a
batch-fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches
imply a more fine-grained checking of termination criteria.

Dictionary
This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar

function fs():

mlr_fselectors$get("design_points”)
fs("design_points")

FSelectorDesignPoints 15

Parameters

batch_size integer(1)
Maximum number of configurations to try in a batch.

design data.table::data.table
Design points to try in search, one per row.

Super classes

mlr3fselect::FSelector->mlr3fselect::FSelectorFromOptimizer ->FSelectorDesignPoints

Methods
Public methods:

e FSelectorDesignPoints$new()
* FSelectorDesignPoints$clone()

Method new(): Creates a new instance of this R6 class.

Usage:
FSelectorDesignPoints$new()

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorDesignPoints$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

library(mlr3)
library(data. table)

terminator = trm("evals”, n_evals = 10)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = 1rn("classif.rpart”),
resampling = rsmp(”holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)

design = data.table(Petal.Length = c(TRUE, FALSE),
Petal.Width = c(TRUE, FALSE),
Sepal.Length = c(FALSE, TRUE),
Sepal.Width = c(FALSE, TRUE))

fselector = fs("design_points”, design = design)

16 FSelectorExhaustiveSearch

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

FSelectorExhaustiveSearch
Feature Selection via Exhaustive Search

Description

FSelectorExhaustiveSearch class that implements an Exhaustive Search.

In order to support general termination criteria and parallelization, feature sets are evaluated in
batches. The size of the feature sets is increased by 1 in each batch.
Dictionary

This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar
function fs():

mlr_fselectors$get("exhaustive_search”)
fs("exhaustive_search”)
Parameters
max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.
Super class

mlr3fselect::FSelector -> FSelectorExhaustiveSearch

Methods
Public methods:

* FSelectorExhaustiveSearch$new()
e FSelectorExhaustiveSearch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
FSelectorExhaustiveSearch$new()

Method clone(): The objects of this class are cloneable with this method.

FESelectorGeneticSearch 17

Usage:
FSelectorExhaustiveSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

library(mlr3)
terminator = trm("evals”, n_evals = 5)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = lrn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)
fselector = fs("exhaustive_search")

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

FSelectorGeneticSearch
Feature Selection via Genetic Search

Description

FSelectorGeneticSearch class that implements an Genetic Search. Calls genalg: :rbga.bin()
from package genalg.

Dictionary
This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar

function fs():

mlr_fselectors$get("genetic_search”)
fs("genetic_search")

https://CRAN.R-project.org/package=genalg

18 FSelectorGeneticSearch

Parameters

suggestions list()
popSize integer(1)
mutationChance numeric(1)
elitism integer(1)
zeroToOneRatio integer(1)
iters integer(1)

For the meaning of the control parameters, see genalg: :rbga.bin(). genalg::rbga.bin() in-
ternally terminates after iters iteration. We set iters = 100000 to allow the termination via our
terminators. If more iterations are needed, set iters to a higher value in the parameter set.

Super class

mlr3fselect::FSelector -> FSelectorGeneticSearch

Methods
Public methods:

e FSelectorGeneticSearch$new()
* FSelectorGeneticSearch$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
FSelectorGeneticSearch$new()
Method clone(): The objects of this class are cloneable with this method.
Usage:
FSelectorGeneticSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

library(mlr3)
terminator = trm("evals”, n_evals = 5)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = 1rn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)

fselector = fs("genetic_search”, popSize = 10L)

FSelectorRandomSearch 19

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

FSelectorRandomSearch Feature Selection via Random Search

Description

FSelectorRandomSearch class that implements a simple Random Search.
In order to support general termination criteria and parallelization, we evaluate feature sets in a
batch-fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches
imply a more fine-grained checking of termination criteria.

Dictionary
This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar

function fs():

mlr_fselectors$get("random_search”)
fs("random_search")
Parameters

max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.

batch_size integer(1)
Maximum number of feature sets to try in a batch.
Super class

mlr3fselect::FSelector -> FSelectorRandomSearch

Methods

Public methods:

e FSelectorRandomSearch$new()
¢ FSelectorRandomSearch$clone()

Method new(): Creates a new instance of this R6 class.

Usage:

20 FSelectorRFE

FSelectorRandomSearch$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FSelectorRandomSearch$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Ma-
chine Learning Research, 13(10), 281-305. https://jmlr.csail.mit.edu/papers/v13/bergstrail2a.
html.

Examples

library(mlr3)
terminator = trm("evals”, n_evals = 5)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = lrn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)

fselector = fs("random_search”)

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

FSelectorRFE Feature Selection via Recursive Feature Elimination

Description

FSelectorRFE class that implements Recursive Feature Elimination (RFE). The recursive algorithm
(recursive = TRUE) recomputes the feature importance on the reduced feature set in every iteration.
The non-recursive algorithm (recursive = FALSE) only uses the feature importance of the model
fitted with all features to eliminate the next most unimportant features in every iteration.

https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html

FSelectorRFE 21

Dictionary

This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar
function fs():

mlr_fselectors$get("rfe")
fs("rfe")

Parameters

min_features integer(1)
The minimum number of features to select, default is 1L.

feature_fraction double(1)
Fraction of features to retain in each iteration, default is 0. 5.

feature_number integer(1)
Number of features to remove in each iteration.

subset_sizes integer()
Vector of number of features to retain in each iteration. Must be sorted in decreasing order.

recursive logical(1)
Use the recursive version? Default is FALSE.

The parameter feature_fraction, feature_number and subset_sizes are mutually exclusive.

Super class

mlr3fselect::FSelector -> FSelectorRFE

Public fields

importance numeric()
Stores the feature importance of the model with all variables if recrusive is set to FALSE

Methods

Public methods:

* FSelectorRFE$new()
e FSelectorRFE$clone()

Method new(): Creates a new instance of this R6 class.
Usage:
FSelectorRFE$new()

Method clone(): The objects of this class are cloneable with this method.
Usage:
FSelectorRFE$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

22 FSelectorSequential

Examples

library(mlr3)

terminator = trm("evals”, n_evals = 10)
instance = FSelectlInstanceSingleCrit$new(
task = tsk("iris"),
learner = lrn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator,
store_models = TRUE

)
fselector = fs("rfe")

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

FSelectorSequential Feature Selection via Sequential Selection

Description

FSelectorSequential class that implements sequential feature selection. The sequential forward
selection (strategy = fsf) extends the feature set in each step with the feature that increases the
models performance the most. The sequential backward selection (strategy = fsb) starts with the
complete future set and removes in each step the feature that decreases the models performance the
least.

Dictionary
This FSelector can be instantiated via the dictionary mlr_fselectors or with the associated sugar

function fs():

mlr_fselectors$get(”sequential”)
fs("sequential”)

Parameters
max_features integer(1)
Maximum number of features. By default, number of features in mlr3::Task.

strategy character(1)
Search method sf's (forward search) or sbs (backward search).

FSelectorSequential 23

Super class

mlr3fselect::FSelector -> FSelectorSequential

Methods

Public methods:
* FSelectorSequential$new()
e FSelectorSequential$optimization_path()
e FSelectorSequential$clone()
Method new(): Creates a new instance of this R6 class.*
Usage:
FSelectorSequential$new()
Method optimization_path(): Returns the optimization path.

Usage:
FSelectorSequential$optimization_path(inst)

Arguments:

inst (FSelectlnstanceSingleCrit)
Instance optimized with FSelectorSequential.

Returns: data.table::data.table

Method clone(): The objects of this class are cloneable with this method.

Usage:
FSelectorSequential$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

Feature sets are evaluated in batches, where each batch is one step in the sequential feature selection.

Examples

library(mlr3)
terminator = trm("evals”, n_evals = 5)

instance = FSelectInstanceSingleCrit$new(
task = tsk("iris"),
learner = 1rn("classif.rpart”),
resampling = rsmp("holdout”),
measure = msr("”classif.ce"),
terminator = terminator

)

fselector = fs("sequential™)

24 ObjectiveFSelect

Modifies the instance by reference
fselector$optimize(instance)

Returns best scoring evaluation
instance$result

Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)

mlr_fselectors mlr_fselectors

Description

A mlr3misc::Dictionary storing objects of class FSelector.

Usage

mlr_fselectors

Format

An object of class DictionaryFSelect (inherits from Dictionary, R6) of length 13.

ObjectiveFSelect ObjectiveF Select

Description

Stores the objective function that estimates the performance of feature subsets. This class is usually
constructed internally by by the FSelectInstanceSingleCrit / FSelectInstanceMultiCrit.

Super class

bbotk::0bjective -> ObjectiveFSelect

Public fields
task (mlr3::Task)

learner (mlr3::Learner)

resampling (mlr3::Resampling)
measures (list of mlr3::Measure)
store_models (logical(1)).
store_benchmark_result (logical(1)).

archive (ArchiveFSelect).

ObjectiveFSelect 25

Methods

Public methods:

* ObjectiveFSelect$new()
* ObjectiveFSelect$clone()

Method new(): Creates a new instance of this R6 class.
Creates a new instance of this R6 class.

Usage:
ObjectiveFSelect$new(
task,
learner,
resampling,
measures,
check_values = TRUE,
store_benchmark_result = TRUE,
store_models = FALSE

)
Arguments:
task (mlr3::Task)
Task to operate on.
learner (mlr3::Learner).

resampling (mlr3::Resampling)
Uninstantiated resamplings are instantiated during construction so that all configurations
are evaluated on the same data splits.

measures (list of mlr3::Measure)
Measures to optimize. If NULL, mlr3’s default measure is used.

check_values (logical(1))
Check the parameters before the evaluation and the results for validity?

store_benchmark_result (logical(1))
Store benchmark result in archive?

store_models (logical(1)). Store models in benchmark result?

Method clone(): The objects of this class are cloneable with this method.
Usage:
ObjectiveFSelect$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

https://CRAN.R-project.org/package=mlr3

Index

x datasets
mlr_fselectors, 24

ArchiveFSelect, 3, 13, 24
AutoFSelector, 4, 4

bbotk:
bbotk:
bbotk:
bbotk:
bbotk:
bbotk:

:Archive, 3,7, 9
:Objective, 24
:OptimInstance, 7,9, 12
:OptimInstanceMultiCrit, 7
:OptimInstanceSingleCrit, 9
:Terminator, 4, 5, 7-10, 12

data.table::data.table, 3, 13, 15, 23
dictionary, 6, 14, 16, 17, 19, 21, 22

fs, 6
fsQ), 14,16, 17,19, 21, 22
FSelectInstanceMultiCrit, 7,8, 10-13, 24
FSelectInstanceSingleCrit, 4, 5,9, 11-13,
23,24
FSelector, 4-10, 11, 14, 16, 17, 19, 21, 22, 24
FSelectorDesignPoints, 14
FSelectorExhaustiveSearch, 16
FSelectorGeneticSearch, 17
FSelectorRandomSearch, 19
FSelectorRFE, 20
FSelectorSequential, 22, 23

genalg: :rbga.bin(), 17, 18

mlr3:
mlr3:
mlr3:
mlr3:
mlr3:
mlr3:
mlr3:

:benchmark(), 4, 7,9, 12
:BenchmarkResult, 3
:Learner, 4, 5,8, 10, 24, 25
:Measure, 4, 5, 8, 10, 24, 25
:mlr_sugar, 6

:resample(), 4
:ResampleResult, 3
mlr3::Resampling, 4, 5, 8, 10, 24, 25
mlr3::Task, 8, 10, 16, 19, 22, 24, 25
mlr3fselect (mlr3fselect-package), 2

26

mlr3fselect-package, 2

mlr3fselect: :FSelector, 15, 16, 18, 19, 21,
23

mlr3fselect::FSelectorFromOptimizer,
15

mlr3misc::Dictionary, 24

mlr3misc::dictionary_sugar_get(), 6

mlr_fselectors, 6, 14, 16, 17, 19, 21, 22,24

mlr_reflections$fselect_properties, I3

ObjectiveFSelect, 7, 9, 24
paradox: :ParamSet, 6, 12, 13

R6,5,7,10,13,15, 16,18, 19,21, 23,25
requireNamespace(), 13

	mlr3fselect-package
	ArchiveFSelect
	AutoFSelector
	fs
	FSelectInstanceMultiCrit
	FSelectInstanceSingleCrit
	FSelector
	FSelectorDesignPoints
	FSelectorExhaustiveSearch
	FSelectorGeneticSearch
	FSelectorRandomSearch
	FSelectorRFE
	FSelectorSequential
	mlr_fselectors
	ObjectiveFSelect
	Index

